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Abstract— Futur e mobile deviceswill increasingly have multi-
ple sourcesof location information associatedwith them, suchas
GPS, cellular cell-sector ID, Bluetooth or 802.11wir elessLAN.
In fact, cellular phoneswith GPS recevers and 802.11wir eless
LAN are already becoming available. However, not all location
technologieswill operate everywhere (e.g GPS typically will not
work indoors whereas 802.11 coverage may be available) and
they typically have differ ent accuraciesand range.

This paper presentsan experimental study of the feasibility of
using multiple wir elesstechnologiessimultaneously for location
estimation. We have collected signal strength information from
both IEEE 802.11and Bluetooth wir elessnetwork technologies,
developedand applied algorithms for determining location using
data for each wireless technology and then used a simple
algorithm for fusing the location estimatesfr om both technologies
to try to enhancethe accuracy of the location estimates.

I. INTRODUCTION

There has recently been a great deal of interestin the
developmentof wireless geolocationtechniques,driven not
only by their commercialand military potential but also by
regulatorypressurese.g.the needto determinethe location of
cellularuserswho originateemegeng calls. The proliferation
of mobile computingdevices and the developmentof high-
speed]ow-costwirelessnetworks hascreatedampleopportu-
nity for geolocatiorsystemsanda large numberof techniques
have beendeveloped[1], [2]. However, mostlocationsystems
are developed around specific technologies,and hence are
restrictedby the limitations of the technologyused. This in
turn restrictsthe applicationsetthat may be deployed on the
system For example applicationausingthe Global Positioning
System[3] may not be able to function inside buildings due
to lack of coverage.

Futuremobile devices are expectedto have multiple wire-
lesstechnologieq4]. This will createthe opportunityto use
multiple technologiesto infer the location of a device. This
shall not only free applicationsfrom the constraintsof tech-
nology limitations, but also offer applicationsthe flexibility to
selectand exploit a larger setof locationinformationsources.
For example, cell-sector ID may be sufficient to find the
nearesttaxicab, but finer granularity provided by Bluetooth
may be requiredfor locatinga userin a shoppingmall.

In this paper we focus on obtainingand fusing datafrom
multiple wireless location estimation sources.In particulay
we investigatehow location can be estimatedin an indoor
ervironment when the users device has both IEEE 802.11
wirelessLAN andBluetoothconnectvity. Clearly otherwire-
less technologiesare also candidatese.g. Infra-Red (IR),
ultrasound, magnetic pulsing, etc. Our focus in this paper
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is not on the specific wireless technologyper se (although
we necessarilyhave to describeand deal with the problems
encounteredwith our specific technology choices) but the
potentialuse of multiple wirelesstechnologiesWe have:

« developed several location estimation algorithms that
apply to both technologies.

« useda simple algorithmfor fusing the locationinforma-
tion from both technologies.

« evaluatedthe performanceof both estimationand fusion
algorithmsin termslocationaccurag usingexperimental
measurements.

To our knowledge such an investigation (especially using
Bluetooth)hasnot beenpreviously publishedin the literature.
The paperis organizedas follows. Sectionll briefly de-
scribegrelatedwork. Sectionlll providesdetailson our experi-
mentalmethodologyln SectionlV we describeseveral simple
locationestimationalgorithmsapplicableto bothtechnologies,
as well as datafusion algorithmsthat use both technologies
together Section V presentsthe location accurag results
obtainedexperimentally We endwith a discussioridentifying
currentlimitations and proposefurther work.

Il. RELATED WORK

Almost all previous work in this area has focused on
estimatinguserlocation with a single wirelesslocation tech-
nology. Examplesof such indoor location systemsinclude
the Active Badge Location Systeni5] which usesIR beacons
andthe Cricket Systen|6] which measureshe time-of-flight
of ultrasoundto estimatedistancefor indoor ervironments.
VariousothersystemsausingRF angulationandlaterationhave
alsobeendeveloped;see[1], [2] for a surwy. More recently
the RADAR systemfrom Microsoft [7], the Nibble system
from UCLA [8] andotherlocationsystems[9], [10] have also
beendevelopeditheseareall RF systemghatrely onanindoor
wirelessdatanetwork. In principle, locationinformationfrom
ary of the location technologiesmentionedabove could be
used to estimate location from multiple technologies.We
have used802.11wirelessLAN andBluetoothPersonalArea
Network (PAN) technologiedbecausef their low cost,simple
infrastructureand rapid proliferation for providing wireless
dataservicesnot just for locationinformation.

Taking advantageof multiple technologiessimultaneously
to provide improved location estimatesvas proposedn [11],
[12]. Howeverthiswork providesno detailsonimplementation
or experimentationwork. We describe specific algorithms
for location estimation and fusion and report on detailed



experimentalmeasurement® evaluatethe location accurag
that results.

Like RADAR [7], we use Static Scene Analysis [1] as
the location estimationmethodology RADAR is an indoor
location tracking systemthat uses802.11 wirelessLAN as
its sensortechnology While our methodologyis similar to
RADAR, we believe it differsin importantdetails(discussed
later) andis much more representatie of realistic situations.

Finally, IBM Alamden[13] hasfocusedon resolving con-
flicts betweenlocation information generatedirom multiple
sources.This work proposesan algorithm that sortslocation
information basedon co-location,time stampingand user
device associationto selectthe information sourceat the top
of the sortedlist. On the other hand, we proposea simple
algorithm that integratesinformation from multiple sources
for indoor ervironmentsusing geometricaveraging.

I11. EXPERIMENTAL METHODOLOGY

This sectionoutlinesthe methodusedto collect raw signal
data for Bluetooth and 802.11 wirelessLAN and discusses
the useof Static SceneAnalysisto smoothwirelesschannel
effectsandtranslatesignal datainto location estimates.

A. ExperimentalTestbed
Our experimentaltestbedis locatedon the fifth floor of a

six-story building. The experimentalareameasures82.2mby
25.7m and consistsof Bluetooth and 802.11 wireless LAN
infrastructureswvhich provide overlappingcoverage.

The Bluetoothinfrastructurefeaturesthree stationarybase
stations(slave devices),andonemobileclient (masterdevice).
The Bluetoothbasestationsconsistof threelaptopsfeaturing
a Pentium 233 MHz processorand 64MB of RAM. The
mobileclientis a Pentium500MHz,128MB RAM laptop.The
basestationsand client are installed with ToshibaBluetooth
PCMCIA cardswhich provide a nominal rangeof 30m. The
Bluetoothbasestationsare positionedto provide overlapping
coverage andform mutual Bluetoothconnectiongo aid real-
time datacollection.

The 802.11 wirelessLAN infrastructureconsistsof three
Orinocobasestations.The rangeof the network is nominally
100m. The wirelessLAN client consistsa Pentium800 MHz
laptop equippedwith a Lucent Silver 802.11 wirelessLAN
card and the Orinoco Client Managersoftware package.

B. Staticsceneanalysis

Static sceneanalysiswas usedas the location estimation
techniquebecauseit appearsto provide good accurayg for
location estimatesin small and medium sized locales and
doesnot requireprecisetime synchronizatiorbetweenmobile
clientsandbasestations Fromthe perspectie of our approach
as a whole, other location estimatetechniquessuchas those
usedin Nibble andthe CMU system,could alsobe used.

For Radio Frequeng (RF) basedtechnologiesstatic anal-
ysis involvesthe 1) measuremenand storageof offline radio
signal characteristic(e.g. signal strength) at fixed, known
locations in the area of interest e.g. floor in a building,
prior to systemoperation,2) measurementf runtime signal

characteristiof anactive radio connectionof a mobile device
during systemoperation,3) comparisorof offline andruntime
datato find oneor morefixed floor locationswherethe offline
characteristids closestto that measuredt runtime.

For both 802.11andBluetoothwe useradio signalstrength
asthe determiningradio characteristién static sceneanalysis
becauseprevious work hasshown that it is better suitedfor
locationestimationthanthe signal-to-noiseatio. Nonetheless,
radio signal strengthcan vary greatly temporally as well as
spatially Thuswe employ the bradketing heuristicto generate
location estimatesfrom signal strength:for a given runtime
signalstrengthmeasurement the databasés searchedo find
the closestoffline measuremenin the ranger — b andr + b,
whereb is a tunable parametercalled the bradket (with ties
brokento favor strongersignalstrengths)if noneis foundthe
locationis assumedo have insufficiently reliablecoverageand
the measuremenis discarded.Finally, note that a measured
radio signalstrengthfrom a singlebasestationmay resultin a
setof severalcandidatdocations;thesecandidatdocationsets
areresohedto a singlelocationestimateusingthe algorithms
describedn SectionlV.

C. Data Collection

To collect offline measurementfor staticsceneanalysisan
imaginary2m x 2m grid was placedon a scaledmap of the
experimentalareaand usedto select49 different equidistant
physicallocationson the grid.

1) Bluetoothdata collection: The strengthof a Bluetooth
connectioris measuredn termsof link quality thatvariesfrom
0 to 255. Althoughwe would have preferreda measuremerin
dBm, link quality wasthe only option offeredby the available
hardware.

In the offline phase50 link quality samplesveremeasured
in eachof four directions (north, south, eastand west), at
eachof the 49 physicallocations,for eachof the threebase
stationsln theruntimephaseraw link qualityinformationwas
collectedat 18 differentphysicallocations.Thesel8 locations
were chosenat randomand do not correspondto the grid
locationswhere offline measurementsvere taken. Also, the
measurementwere taken at a differenttime than the offline
measurementsThus we consider a realistic situation that
takes into accountboth the tempoal and spatial variability
of wirelesslinks. We chose 18 locations deliberatelyso as
to systematicallycover three different coveragescenariosat
6 of the locationsthere was coveragefrom 3 basestations,
and another6 therewas coveragefrom 2 basestations,and
at the remaining6 therewas coveragefrom only 1. At each
location, 50 samplesof link quality data were taken while
facing the north direction. Note that while the the offline
measurementseretakenat multiple orientationgnorth,south
eastandwest),sincethereis no simpleway to detecta mobile
usersorientation they cannotbe matchedlirectly to theusers
orientation. Thus we considerthe realistic situation where a
user’s orientationis unknownand offline data is the average
of measuementgaken with multiple orientations.
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Fig. 1. The diagramshavs the formation of polygons(ay ,bp,co ) and

(au,bp,co ) whereay anda; areestimatedrom basestationA, by andcy are

estimatedrom basestationsB and C respectiely. SmallestPolygonsearches
for the smallestpolygon (a1 ,bp,Co), and returnsas an estimatethe centroid

of the polygon, e;.

2) 802.11 data collection: The method for 802.11 data
collectionwas similar to that for Bluetoothwith the strength
of the 802.11wirelessconnectiormeasuredn termsof signal
strengthin dBm

IV. LOCATION ESTIMATION ALGORITHMS

As discussedreviously, the signal strengthmeasurements
for eachwirelesstechnologyare processedising bracketing.
For 802.11the resultis a setof vectors< z,y, A4, B,C >
where (z,y) is the location of the measuremenin the floor
coordinatesystemand A is the set of candidatelocations
obtained (as a result of bracketing) for the measurements
taken of the signal strengthfrom basestationA; similarly B
and C are the candidatelocationsobtainedfor basestations
B and C respectiely. For Bluetooth we denotethe vectors
< z,y,Ba, Bp, Bc >. Notethatdependinguponthe location
where the measurementare taken, ary of the candidate
locationsetsmay be empty In this sectionwe describesereral
heuristicalgorithmsusedto resole the candidatdocationsets
into a single location estimate.

A. SmallestPolygon (SP) algorithm

The SmallestPolygonalgorithm searcheshroughall poly-
gonsthatcanbeformed,whereeachvertex is from a different
candidatelocation set (i.e, one eachfrom A, B, C'). We call
such a polygon a distinct-vertex polygon, and the intention
of using such polygonsis to allow a fair contribution from
all basestations.SmallestPolygon finds the distinct-vertex
polygonwith the smallestperimeter and returnsthe centroid
of that polygon. If there is only one non-empty location
set (i.e., thereis coveragefrom only a single basestation),
Smallest Polygon drops the distinct-vertex requirementand
selectsone of the candidatelocations at random. Figure 1
illustratesan example.

B. Triangulation (TN) algorithm

Triangulationis a classicallocation estimationtechnique
that hasbeenusedin variouslocation systemsincluding the
widely acceptedGPS. Triangulation forms, for each base
station,a circle with the basestationasthe centerandpassing
through a candidatelocation. If the three circles formed for

threebasestationsintersectat a single location, that location
forms the bestestimateof the mobile devices’ location.

However, frequentlycirclesintersectat two pointsor do not
intersectat all. The heuristicwe useto resol\e this is that (a)
eachcircle is the largestpossible,i.e., wherethereis a choice
of candidatdocationsto draw a circle for a givenbasestation,
we choosethe candidatefurthestfrom the basestation;and(b)
the intersectionpoints belongingto eachcircle-pair are used
to form the shortestdistinct-vertex polygon and the centroid
of that polygonis usedasthe final location estimate.

C. NearstNeighbor(NN) algorithm

The NearestNeighbor algorithm is usedin the RADAR
systemfor 802.11wirelesstechnologyandoperatessfollows.
Assumea triple (a, b, c) where eachelementof the triple is
the runtime signalstrengthmeasuredor basestationsA, B, C
respectiely. The obsened triple is comparedwith the offline
measurementto find the location ! with the signal strength
triple (o', ¥, ¢') suchthatthe RootMeanSquaredRMS) error
r = /((a—a)?+ (b-1b)+ (c —¢)?) is minimized;
that location [ is then taken as the mobile device’s location
estimate.

Obsene that NearestNeighbor always returns a location
on the grid wherethe offline measurementaere taken while
SmallestPolygonand Triangulationgenerallyalmostnever do.
A modificationto NearestNeighborevaluatedin the RADAR
systemis to considernot only the location with the lowest
RMS error but the locationswith the & lowest RMS errors,
andaveragetheresult.It wasfoundin theRADAR systenthat
the reductionin distanceerror was small, andbeyond & > 3
the error actually increased.

We now describea simple algorithm that processessti-
matesfrom individual sensortechnologiesn a bid to achieve
more accuratelocation estimates.

D. Basic (Averaging) Fusion

SmallestPolygon, Triangulationor NearestNeighbor may
be usedto obtain location estimatesfor individual sensors.
Each sensorestimatecontributes to polygon formation and
the centroidof this polygonis proposedasthe final result.In
our case sincewe have two technologiesye usethe midpoint
of the line connectinghe estimatedocationobtainedfor each
technology

V. PERFORMANCE EVALUATION

This section presentsresults of our experiments. While
an extensive experimental evaluation has been carried out,
we only presentsome of the results due to lack of space.
We evaluate: (1) how well the estimationalgorithms work
when using a single technology and comparethem to each
other and (2) how well they work when using multiple
technologiessimultaneously In the latter casewe compare
differentscenariosvhere multiple technologiesare used,and
the different algorithms when usedin those scenarios.The
metric usedthroughoutis the meandistanceerror, where a
location estimate,say (z',y') is comparedwith the known
true location (z,y) to yield the distanceerror e = /((z —
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Fig. 3. Standarddeviation of distanceerror for SR TN, NN and NN k=2
acrossone, two andthree802.11basestationcoveragelocations.

z')? + (y — ¢')?)), andthe meandistanceerror is calculated
for several location estimates.

A. Comparisonof the location estimationalgorithms
Herewe briefly comparethe locationestimationalgorithms

in terms of mean distance error using 802.11. Figure 2
showvs the mean distanceerror for the different algorithms
for locationswhere thereis coveragefrom 1, 2 and 3 base
stationsrespectiely. First we obsene that, as expected,in
generaldistanceerror decreaseasthe numberof basestations
covering a location increases.This trend is mirrored in the
standarddeviation of the distanceerror in Figure 3. The
exceptionis the NN k=2 algorithm,for which error increases
in goingfrom 2 to 3 basestations.In this casechoosingmore
candidatelocations (with k=2) causedocationsfurther from
the actuallocationto be includedas candidateswith 3 base
stations,this effect becomegronounced.

We also obsenre that in general the Smallest Polygon
algorithm outperformsthe other three algorithmswhen using
802.11,by around1.8-2m (28%-31%)and 4-5m (24%-28%)
for 3 and1 basestationscoverage(for 1 basestationcoverage
SPand TN shav equalresultsbecausevhen no circle inter-
sectionsarefound TN falls backto SP). The exceptionis the
caseof 2 basestationswhereNN k=2 performsbetterthanSP
but the improvementis slight and SP remainsthe bestchoice
overall. However, this improvementcomesat the expenseof
a highervariancein the location estimates.

Figure4 compareghe locationaccurag obtainedby using
Bluetooth and 802.11 individually for varying numbersof
visible basestations.In generalusing Bluetooth gives better
accuray thanusing802.11for all algorithmsexceptSP Thus

Mean Distance Error using Bluetooth and 802.11 for loc:
estimation.
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in an ervironment offering both 802.11 and Bluetooth base
stations, TN or NN would seemto be the bettersingle algo-
rithm for location estimation.Furthermore thesealgorithms
shav smaller standarddeviation than SP (not shovn due to

lack to space).Thusthe following discussiorfocusseon TN

and NN.

B. Locationdata fusion . . .
We now considerthe effect of using multiple technologies

simultaneouslyOne of the key advantagesf using multiple
technologieds that location estimationcan take advantageof
informationthat would not be available otherwise.Intuitively,
this shouldimprove location accurag becausanformationis
collectedfrom more basestationsof different technologies.
We quantify this improvementin Figure5 whereBasicFusion
emepges as the winner: for TN the improvementis 1.7-
3.3m(36-52%)and 0.2-2.5m(2-24%)for three and two base
stationscoveragerespectiely; for NN th improvementis 0.5-
2m(10-31%)and 0.4-2.3m(5-28%)for three and two base
stationscoveragerespectiely.

We now malke a differentevaluationof the useof multiple
technologiesThetotal numberof basestationds keptconstant
in all casesj.e. 3, and different combinationsof 802.11and
Bluetoothbasestationsareused.Figure6 shovs the meandis-
tanceerror obtainedby post-processinghe locationestimates
using fusion. We note that fusion improveslocation accuray
comparedo using802.11alone,andthis improvementcanbe
substantiat for TN the improvementapproximatesat 0.6-0.7
m (12-16%)and for NN at 0.4-1.5m(6-22%). On the other
hand, the distanceerror comparedto Bluetoothincreaseso
0.9-1m(19-23%)and1m (21%) for TN andNN respectiely.
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We alsonotethatthe resultsarenot unambiguouslyn favor
of usingBluetoothover 802.11.For example,the combination
of usingtwo 802.11andone Bluetoothbasestationsprovides
betteraccurag (1.1m,17%)thanusingtwo Bluetoothandone
802.11for NN. This indicatesthat althoughFusionwith data
from Bluetooth base stations generally improves accurag,
the amount of improvement can vary, and the availability
of Bluetooth in lieu of 802.11 does not always result in
improvements.

VI. DISCUSSION AND FURTHER WORK

In this sectionwe briefly discusssomeof the issuesarising
with the use of multiple technologiesin the light of our
experimentalobsenations.

Our experimentalmethodologyis similar to that usedin
RADAR, but with importantdifferencesRADAR testedthe
accuray of the NN algorithm by comparingan offline signal
datawith all offline measurementdn contrastwe take into
accountthe real variation of radio signalsin spaceand time
by taking actualruntimemeasurementst a differenttime and
at randomlocationsnot on the original grid.

We expectedrelatively betteraccurag from Bluetooththan
802.11than we actually obtained,consideringthe difference
in cell radiusfor the two technologiesWe hypothesizethis
is due to our use of the first versionof Bluetooth PCMCIA
cardsavailablein the market. The card did not provide a true
signalstrengthindication (in dBm) but a scalarrepresentation
of strengthcalled link quality, which hasno units. It is not
clear how accuratelylink quality reflectssignal strength.We
also found that the Bluetoothlink quality measurefluctuates
far morethan802.11signalstrengtheven at a single location.

A direction for future work is to evaluate different radio
characteristicsfor location estimation (e.g. signal-to-noise
ratio in conjunctionwith signal strength,the probability dis-
tribution of signal strength,angleof arrival, etc.). Also, more
sophisticatedocation estimationalgorithms,both for a single
technologyas well as for datafusion, should be developed.
Finally, the effect of using other technologiestogether(e.g.
IR, ultrasound GPS,cellular, etc)in indooraswell asoutdoor
ernvironmentsshouldbe investigated.

VII. CONCLUSION
We have carried out a detailed experimentalstudy of the
feasibility of usingmultiple wirelesstechnologiedor location

estimation We concludewith the following obsenationsfrom
our study:

« In general Bluetooth gives better accurag than using
802.11wirelessLAN the algorithms.In an ervironment
offering multiple technologiesTriangulationand Nearest
Neighbourwork well with Bluetooth.On the other hand
Smallest Polygon is found to work well with 802.11
wirelessLAN at the costof highervariance.

« Collectingsignalinformationfrom multiple technologies
implies data availability from an increasednumber of
basestationsthat shouldimprove location accurag. We
quantify this improvementshowing that it canbe signif-
icant, resultingin improvementsof 0.2-3.3m.Thusin an
absolutesensesxploiting multiple technologiesvherever
availableis beneficial.

« In contrastto the above case we investigatedhe impact
of fusion on location accurag with a constantnumber
of basestationsfrom multiple technologies While our
resultsarenot unambiguousye notethatfusionimproves
locationaccurag over the soleuse802.11wirelessLAN
by 0.4-1.5m.

In further work we proposeconsideringmore sophisticated
estimationalgorithmsfor singletechnologyestimationaswell
as location estimationby fusing information from multiple
technologies.
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