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Abstract— Wireless local area networks (WLANS) are emerging
as a popular technology for access to the Internet and enterprise
networks. In the long term, the success of WLANs depends on
services that support mobile network clients.

Although other researchers have explored mobility prediction
in hypothetical scenarios, evaluating their predictors analytically
or with synthetic data, few studies have been able to evaluate their
predictors with real user mobility data. As a first step towards filling
this fundamental gap, we work with a large data set collected from
the Dartmouth College campus-wide wireless network that hosts
more than 500 access points and 6,000 users. Extending our earlier
work that focuses on predicting the next-visited access point (i.e.,
location), in this work we explore the predictability of the time
of user mobility. Indeed, our contributions are two-fold. First, we
evaluate a series of predictors that reflect possible dependencies
across time and space while benefiting from either individual or
group mobility behaviors. Second, as a case study we examine voice
applications and the use of handoff prediction for advance band-
width reservation. Using application-specific performance metrics
such as call drop and call block rates, we provide a picture of the
potential gains of prediction.

Our results indicate that it is difficult to predict handoff time
accurately, when applied to real campus WLAN data. However, the
findings of our case study also suggest that application performance
can be improved significantly even with predictors that are only
moderately accurate. The gains depend on the applications’ ability
to use predictions and tolerate inaccurate predictions. In the case
study, we combine the real mobility data with synthesized traffic
data. The results show that intelligent prediction can lead to
significant reductions in the rate at which active calls are dropped
due to handoffs with marginal increments in the rate at which new
calls are blocked.

I. INTRODUCTION

There are many challenges remaining before wireless local-
area networks (WLANSs) can effectively support voice, video,
and other real-time interactive services. WLAN operators must
incorporate mobile services and yet use resources efficiently to
establish a profitable business model. To this end, the capability
of predicting the time and place of a roaming user’s next move
can play a significant role.

The importance of mobility prediction to service provisioning
has been widely acknowledged in the literature [1]-[13]. In most
of these papers, voice is the main application of interest, and
the objective is to reduce the likelihood of dropping roaming
callers. These papers use mobility prediction for bandwidth
reservation (or channel assignment) prior to the user’s move from
one cell to another (i.e. “handoff”’). We summarize the related
research and highlight their main assumptions in the following
section. For now, it is important to note that most prior work

have evaluated their predictors analytically or with synthetic
data, leaving unanswered fundamental questions about how these
predictors would fare with real user mobility patterns. To the best
of our knowledge, published works based on real data are either
limited to position tracking in cellular networks (e.g., [14]) or
focuses on location prediction in WLANSs independent of the
time aspect (e.g., our earlier work [15] and others [16], [17]).

In this paper, we use real user mobility data to explore a
range of predictor types to bring new insight to the challenge
of predicting the time of a user’s next move. Specifically, we
use a two-month subset of the user mobility trace from the
Dartmouth College wireless network [18], [19], which includes
545 access points and 6,181 users. The mobility trace specifies
the association history of each user with the access points in the
network. In this context, as a distinctive feature of the real data
we use, mobility does not necessarily coincide with the change in
user’s position and it merely refers to the fact that user’s device
changed its access point. Note that for the application that we
consider in our case study, bandwidth reservation for handoff
VoIP calls, this change in registration is the relevant event as
opposed to the user’s geographical mobility.

One particular trend that we have observed in the literature
is that predictors have been evaluated by the final outcome of
the application performance. Although such evaluations can be
valued as what finally matters, they do not clarify to what extent
the performance gain is due to the quality of the prediction
(i.e., low prediction error) or due to the accompanying control
systems that use the predictions as their input and compensate
for any prediction errors. Therefore, we divide our analysis into
prediction and application stages, to measure the performance
at the output of each stage separately. Nevertheless, evaluating
predictors independent from the actual application is not a trivial
matter. We need to identify a meaningful set of metrics that can
properly evaluate predictors in terms of their ability to predict
both the time and location of the next handoff. It is also true
that different applications require different predictor outputs, for
which the performance cannot be adequately measured by a
single metric. In accordance with these observations, we defined
a suite of metrics, which include: accuracy, earliness-lateness,
and under/over-provision. These metrics are particularly useful
for measuring binary decisions, continuous-valued outputs, and
probability outputs, respectively.

This paper makes two major contributions. As our main
contribution, we evaluate a series of predictors that can take
advantage of various dependencies across time and space. This



approach not only provides a sanity check for widely used
mobility and prediction models in the current state of the art,
but also derives insight about the predictor features that drive
good performance in a real WLAN environment. Note that our
main concern here is not on the complexity of the predictors and
their implementation details; rather our goal is to understand the
level of predictability for the real mobility traces that we have.
With this in mind, our study is an important report on whether a
campus WLAN environment is amenable to accurate prediction
of handoff events.

As our second contribution, we present a case study that
quantifies the possible gains due to mobility prediction in an
actual application. In our case study, we focus on VoIP as
the application of interest and we evaluate the use of mobility
predictors for advance bandwidth reservation to maintain VoIP
service quality after handoffs. We measure the performance using
application-specific call drop rate and call block rate metrics.
This approach allows us to dissect the performance gains due to
the quality of predictions and the reservation policy. We focus on
the influence on call drop rate and call block rate when mobility
prediction applies to a variety of call admission schemes. We left
out the technical details for implementing different bandwidth-
reservation and call-admission systems.

Our results reveal a range of predictability for time and
location, according to the proposed metrics. Although some
predictors do better than the others on average, we also observe
that certain prediction techniques work much better for some
users or at particular locations. In general, however, a clear
outcome of our study indicates that accurate prediction with
fine time granularity requires more sophisticated and expensive
data collection technologies than simply relying on the user
associations. It is promising, however, to see that even with a
modest level of predictability, our case study indicates that the
intelligent use of predictor outputs can improve the performance
of some applications significantly. More specifically, our case
study, which superimposes a synthesized traffic data over the real
mobility data, shows that with prediction, we achieve significant
reductions in call drops while minimally affecting the call block
rates.

The rest of the paper is organized as follows. In Section II,
we present a brief overview of the related literature. Section III
provides a model outlining our assumptions about the system
and the data at hand. In Section IV, we introduce the specifics
of predictors we examined. Section V describes the proposed
performance metrics and evaluation method. Section VI ex-
plains and discusses the main results on predictors. Then, in
Section VII, we introduce our case study following standard
evaluation methods that are widely used in the literature. Finally,
Section VIII concludes the paper by summarizing our findings
and discussing ongoing work.

II. LITERATURE OVERVIEW

Location prediction is the process of predicting a roaming
user’s next location given their current location and prior move-
ment history; in this paper we focus on predicting the next cell
that a mobile user will visit. Many location-prediction techniques
exist [20], and we evaluated several with real data [15]. For many

applications, however, it is important to predict when the user is
likely to move, as well; in this section we summarize research
that attempts joint time and location prediction, especially in the
context of resource reservation designed to improve telephony
quality of service. Here, we emphasize two points: (i) prediction
accuracy largely depends on the granularity of the available
data set and (ii) the success of a predictor strongly depends on
how close its assumptions about the user mobility models the
real situation. In the following, we use the terms location, cell,
and access point (AP) interchangeably, and position should be
understood as the point in space.

Every predictor is limited by the granularity of the available
information. There are three common options.

1) Record the visited locations and time of handoff to these
locations for each user. Since this information is readily
available to every network operator that supports roaming,
it is widely used [1], [2], [4], [6], [11]. The data we use
in our evaluations also falls into this category.

2) Record the position and velocity of each user. This infor-
mation can be obtained by signal triangulation techniques
or client-carried GPS devices, both increasingly common
in cellular phones. Here, mobility prediction requires algo-
rithms that can infer cell boundaries and user velocity [4],
(71, [91, [10].

3) Use high-level information that describe the distinguishing,
designating or limiting properties of each cell, derived from
road and building maps [1], [12].

Every predictor also assumes, implicitly or explicitly, certain
characteristics of user behavior. Its success depends on the degree
to which user behavior actually fits these assumptions, and in
the variance of users’ behaviors. Unfortunately, little of the
prior research evaluates mobility predictors using data about real
user mobility. To study the real users’ behaviors, in our early
work [15] we evaluated location predictors using the Dartmouth
WLAN user traces. In this paper, we use data from the same
campus WLAN to evaluate time-and-location predictors directly,
and in the context of a bandwidth-reservation scheme for roaming
VoIP callers.

The rest of this section presents specific examples from the
prior art.

In one of the earliest works specifically targeting location
prediction in WLANSs, Lu and Bharghavan [1] suggest the use
of location semantics (such as office space, corridor, or lounge),
and their relevance to the individual users, to guide location
prediction. For instance, if a specific location is known to be an
office space, the residents of the office are likely to be moving
towards this location provided that they are approaching this
location. If the current location is a lounge, the aggregate history
of all users that have used that particular lounge should give a
rough idea about where the next location should be. This quite
intuitive approach may be misleading, because it is often the
case that there is not a one to one relation among physical space
and access point. A physical space such as office and lounge can
be served by more than one access point. Similarly, an access
point can cover many physical spaces. Both instances violate the
one-to-one assumption in Lu and Bharghavan [1].

Others have proposed to use similar high-level information



for cellular networks, where vehicular speeds and handoffs are
common. For instance, some argue that road maps, which show
road segments and their intersections, can help estimate the path
of a caller in a vehicle and thus predict the time and place of the
next handoff [12]. Rather than modeling the transitions between
cells, they model the transitions between road segments. Using
precise velocity estimates, they are able to obtain the most likely
handoff events and corresponding handoff times. The transitions
between the road segments follow a group mobility pattern,
used by Choi and Shin in the context of transition probabilities
between the cells [6].

Choi and Shin [6] further advocate a model in which some
handoffs are driven by external factors, and less by individual
history. Therefore, the handoff probability can be estimated by
the aggregate of all users’ history at each location. Indeed,
their handoff probability is conditioned on the current location,
the previous location, and on the time already spent in the
current location. Furthermore, they suggest that predictions can
be further improved if they are conditioned on the time of the
day (i.e., busy hours vs. normal hours) as well as on the specific
day (i.e., weekday vs. weekends).

Levine et al. [2] use the shadow cluster concept. Depending
on the velocity of the user, its current base station determines
a set of neighboring cells that can be visited by the mobile.
The past residence history, call duration statistics, neighborhood
relations, and direction of the user are all used to estimate handoff
probability at a future time from the current cell of an active call
to all other cells in the shadow cluster.

Other research proposes to measure and use the signal to
interference and noise ratio, or GPS positioning [4], [7], [9].
One [4] considers a 2-level mobility estimation by performing
pattern matching predictions for inter-cell handoffs and modified
Kalman filters for intra-cell behavior. Another [7] uses a recursive
least-square method to predict the next cell using location
inference obtained by a fuzzy logic. Another [9], on the other
hand, uses a direction-estimation-based method to form a most
likelihood cluster (MLC) of future cells. Interestingly, these au-
thors also distinguish prediction-conforming and non-conforming
users, and later penalize non-conforming users in the resource-
allocation phase. In all these models, the accuracy of handoff
prediction depends on how well the position, velocity, and accel-
eration are estimated. Some recent works report promising results
both in urban and suburban area measurements at vehicle and
pedestrian speeds by using a first-order autoregressive model for
state transitions and Kalman filtering for current state estimation
[14], [21]. Robust location tracking with mobile base stations is
also among the investigated scenarios [22].

Pattern-matching techniques constitute another important class
of techniques for predicting either location or time. These
techniques generally assume a mixture of different Markovian
models as the source of movement patterns and some of them
are proven to be asymptotically optimal for such patterns [11],
[23], [24]. In an earlier experimental comparison of these and
other location-prediction methods [15], we found that a simple
Markov predictor obtains the best prediction accuracy with less
complexity and using less space than the more sophisticated
predictors.

III. SYSTEM MODEL

Before we describe the predictors we study, and our method
for evaluating them, we first outline our assumptions about the
users, the data available to predictors, and the system for making
and using predictions.

We envision a wireless network in which users associate with
one access point (or cell) at a time, and roam from cell to cell
as needed to remain connected while they move. Indeed, it is
possible that the user’s device may switch cells (i.e., re-associate
with a different access point) without physically moving; in WiFi
networks, some stationary clients have been known to alternate
rapidly between two or three access points when no one signal
clearly dominates the others [18]. Occasionally, the user leaves
the network by switching off their device or by moving out of
range. This sequence of handoffs for each user, indicating the
time and access point of each move (or “OFF” when the user
leaves the network), is their movement history.

We assume that there is a centralized or distributed mechanism
in place for (i) collecting the history, (ii) performing online
predictions, and (iii) distributing prediction results to relevant
application agents. The challenge of designing scalable yet
optimal resource allocation that relies on online measurements
is inherent to all distributed systems and is beyond the scope of
this paper.

IV. PREDICTORS

We begin by describing predictors that can predict the time
of the next handoff, which can be used in tandem with a
predictor that predicts the next location (of which many have
been proposed in the literature). We then consider integrated
approaches that predict the location and time jointly.

A predictor examines a movement history, which (by our
afore-mentioned assumption) is a sequence of cell associations
(access point, time), rather than a record of client position
and velocity. Thus we consider predictors that consider location
symbolically rather than geometrically.

A. Predictors

We consider three fundamentally different types of predictor:
Markov predictors, moving-average predictors, and CDF predic-
tors. Some of these can be used to predict the handoff time only,
while some can predict both time and destination. Each of these
predictors can be trained on either a) the history of movements
by a single individual, or b) the history of movements by all
users. Whether trained with “individual” or “aggregate” data,
the predictor is used in the same way, to predict each handoff of
each user. In addition to these three types of predictors, we also
include a Static Neighbor Graph predictor for comparison.

First, we define the three basic predictor types followed by
the Neighbor predictor.

1) Markov predictor: The order-k (or “O(k)”) Markov pre-
dictor takes a sequence of symbols (ai, a9, ..., a,) as a history
string, and tries to predict the next symbol from the current
context, that is, the sequence of the £ most recent symbols in
the history (an—k+1,-- -, an).

Consider history H = ajas . .. a,, and let substring H (i, j) =
@;@;yq1 . ..aj forany 1 <¢ < j < n.Let X be a random variable



symbol. Let X (7, j) be a string X; X1 ...X; representing the
sequence of discrete random variates X;, X;y1,...X; for any
1 <4 < j < n. Define the context c= H(n — k+ 1,n). Let A
be the set of all possible symbols. If X has order-k stationary
Markov distribution, for all a € A and ¢ € {1,...,n — k}, its
distribution satisfies

P(X,41=0a|X(1,n) = H)
=P(Xn+1=0alX(n—k+1,n)=c)
= P(Xi+]g+1 = G|X(Z + 172 + k’) = C).

At any given time, we can estimate the transition probability
to a using current history H and current context ¢ of most recent
k symbols as

~ N(ca, H)
P(X,y1=a|lH)=~ P(Xyy1 =a|lH) = ——"-= 1
( n+1 | ) ( n+1 | ) N(C7 H) ) ( )
where N(s',s) denotes the number of times the substring s’
occurs in the string s. The Markov predictor returns the most
likely next symbol as its output:

Xng1 = argmax, ¢ 4(P(Xp41 = a)). 2)

We further define the O(k) fallback Markov predictor, which
falls back to an O(k — 1) Markov predictor whenever the O(k)
predictor is unable to make a prediction, which occurs whenever
N(e, H) is zero, that is, whenever the current context has never
been seen before. We also define the “order-0” Markov predictor,
which always outputs the symbol that occurs most frequently in
the history H. Our earlier work [15] shows that O(2) Markov
with fallback is one of the best location predictors; in that work,
a history H represented a series of locations.

2) Moving-average predictor: Moving averages are com-
monly used to predict a trend in a sequence of values. The
order-k (or “O(k)”) moving-average predictor takes a sequence
of values and predicts that the next value of the sequence is the
average of the last k values in the sequence.

Consider a history H of values vy, vs,...,v,. The order-k
moving-average predictor estimates the next value to be

k
Un+1 = % ;Unsz»l- (3
3) CDF predictor: Rather than attempting to predict the
next symbol or value in a sequence, this predictor works with
inequalities. Specifically, it produces the probability that the
next value is less than (or greater than) a given value. It does
so by computing the observed cumulative distribution function
(CDF) of the historic values, and using the CDF to measure the
probability of a given value appearing in the distribution.
Consider a history H of values vy, v, - - -, v,. Suppose V is
the random variate, which outputs the actual values in H, and
P is its distribution. The CDF predictor computes the observed
CDF function of V from the histogram, that is,
1 n
CDF(V < v) = — ;I(UZ <), )
where I is the indicator function. In a similar fashion, we can
compute the probability of values occurring in range a < V <

b, by simply computing P(a < V < b) = (CDF(V < b) —
CDF(V < a)).

4) Static Neighbor graph predictor: We introduce a simple
“straw-man” predictor, the Static Neighbor Graph Predictor, to
compare with our predictors.

Using users’ current neighbor locations as the prediction is an
obvious way to predict future locations. Mishra et al. [13] present
an algorithm to dynamically build a user’s neighbor graph to
cache context for fast handoffs. If the network topology does
not change quickly over time, a location predictor can use pre-
collected AP topology information to predict the user’s mobility.
In our experiment we use one month’s data to construct a directed
graph representing transition history as follows: when we observe
a user move from an AP i to another AP j, if the edge (¢, j) is
not in the graph, we will add the directed edge to the graph and
set the weight of this edge to 1; if the edge (i, j) is in the graph,
we add 1 to the weight of the edge. At the end of the month,
we have a directed graph with weighted edges and normalize
the weights so that Vi, >, w;; = 1, where w;; is the weight on
edge (4, 7). When a prediction is requested, the predictor finds the
user’s current location ¢ in the graph, and returns a list {(j, wi;)}
for all edges (4, j) originating at 7.

B. Predictor uses

We now show how to apply the first three techniques to predict
the duration of the current stay and the likelihood of handoff to
any other access point. Some applications need an estimate of
the handoff time (or, equivalently, the duration of the stay at the
current location); other applications are more concerned about
knowing whether the handoff will happen “soon” and if so, the
destination of the handoff.

1) Duration prediction: To predict the time of handoff, one
can look for patterns in the residence times rather than the
absolute time of the handoff. We apply all three predictors, i.e.
Markov, moving-average, and CDF to predict the next duration.

We use the Markov predictor by considering the history
H = dy,ds,...,d, of previous durations, again quantized into
intervals of size At. Each quantized duration bucket is thus a
symbol in A.

We use the moving-average predictor as follows. Consider
again the history H = d1,da, ..., d, of previous durations; there
is no need to quantize the times as we did above. Then by (3)
the order-£ moving-average estimate of the residence time at the
current location is

k
1
dni1 =7 ; dp—it1- 5)

Similarly, we do not need to quantize the duration to apply
CDF predictor. Consider again history H = di,ds,...,d, of
previous durations, we estimate a value of d such that with
probability p the duration will be less than d. We define the
CDF by counting the fraction of durations shorter than a given

time:
n

CDF(r) = -3 10 <),

i=1
where I() is the indicator function. We can interpolate to predict
that the user will stay shorter than d = (¢;+¢5,)/2, where ¢; is the



minimum ¢ that satisfies CDF(t) > p, and t;, is the maximum ¢
that satisfies CDF(t) < p. The predictor parameter p expresses
the desired confidence in the result.

We can apply each predictor to the history observed in any
location as well as to the history observed only at the current
location to make them “location-independent” and “location-
dependent” predictors respectively. We can also apply the predic-
tors to each user’s history (individual predictors) or apply them
to all users’ history (aggregate predictors).

2) Joint Location and Time Prediction: Many applications
need to predict both the time and destination of the next handoff;
our telephony case study in Section VII is one example. In this
case the goal is to predict, for every destination, the probability
that a handoff will occur within the next At period, conditioned
on the current location and the duration of the visit so far. Our
approach is to combine the Markov location predictor and the
CDF time predictor.

Consider a user’s movement history H =
(t1,a1), (t2,a2), ..., (tn,as), in which ¢; is the time that
the user arrived at location a;. From H we extract the location
history L = aj,aq,...,a,, and from L the order-k location
context c = L(n — k+1,n) = an—k+1,---,0n-1, an. We then
search the history L for instances of the context c. We need to
examine the destinations that follow each such instance, and in
particular to examine the duration of the visit preceding each
of those destinations, to be able to predict the duration in the
current context. So, we need to extract the set of durations for
each possible destination z:

From each duration set D,, we use the CDF predictor in
Section IV-A.3 to compute the conditional probability P, (t <
d < t+ At|c,t) that the user will move to location = within At
seconds after the current elapsed residence time ¢. We can also
use the O(k) Markov predictor to compute the probability P(x)
of every possible next location & with Equation (1).

Therefore, the probability of the user moving to each of the
possible locations 2 within the next At seconds, given the current
context c at the current elapsed residence time ¢, is

P(z|e,t) =Px) - P(t <d <t+ At]|c,t) @)

We name this predictor MarkovCDF.

This predictor is always conditioned on the current location
context. As described above, the predictor builds per-user tables,
but it is equally possible to build aggregate tables from all users’
movement histories.

V. PERFORMANCE METRICS

A proper evaluation of predictors requires meaningful perfor-
mance metrics. In the context of a given application, an evaluator
can use performance metrics relevant to that application. For
instance, if the application is voice telephony, the rate of dropped
calls emerges as a natural choice. Application-specific metrics are
often affected by factors other than prediction quality, such as the
bandwidth-reservation policy in a voice telephony application,
so the metric does not provide direct insight into the quality
of the predictor. Furthermore, it is valuable to develop generic

metrics to allow the study and comparison of predictors outside
the context of particular applications. In this section, we develop
three metrics with a focus on time or time/location prediction:
accuracy, earliness/lateness, and over/under-provisioning. In Sec-
tion VII we identify additional application-specific metrics for
our case study.

A. Accuracy

In our previous work [15], we evaluate several location predic-
tors using the metric accuracy, defined as the ratio between the
number of correct predictions and the number of all predictions.
A prediction was correct if it predicted the next location correctly.
We quantized time and used the accuracy metric for some of our
predictors.

B. Earliness and Lateness

Accuracy is a good metric for applications that require hard
decisions, e.g., whether the handoff will occur or not in a given
time interval, from the predictors. In many cases however it
is more desirable to measure how much the predicted handoff
time differs from the actual handoff time. In most applications,
overshooting or undershooting the actual time of handoff will
have different implications; for example, a late request to reserve
bandwidth for a roaming voice call will be useless, whereas an
overly early request will consume excess resources.

Hence, we define separate metrics; when a handoff occurs at
time %5, and the handoff was predicted to occur at time ¢, the
prediction earliness is t), —t, if t; > t,, and lateness is t, — tp
if ¢, < t,. We compute each user’s average earliness across all
movements in which the prediction was early, and each user’s
average lateness across all movements in which the prediction
was late.

C. Over-provision and Under-provision

When a predictor is used for advance resource allocation, an
incorrect prediction can lead the system to reserve too many, or
too few, resources. We consider predictors, such as the CDF
predictors defined in the preceding section, that provide the
probability of handoff for each possible destination, and imagine
a system that provisions resources at each destination in propor-
tion to these probabilities. When the handoff occurs, we can
determine the amount that resources were under-provisioned at
the actual destination, and over-provisioned at all other locations.

We can now precisely define under- and over-provisioning.

Under-provisioning: At any time ¢ that the predictor indicates
that the user v may move from location ¢ to location j with
probability P(j|u,,t), and the handoff occurs, we measure the
amount of under-provisioning for this handoff as

E(uaiaj7t) =1 —P(]|U,’L,t)

In effect, under-provisioning is equivalent to computing the error
with respect to an “ideal predictor” that always returns the correct
prediction: probability 1 for the correct destination just before the
handoff is to occur, and probability O for other destinations or
other times. Thus, a lower value of E represents better prediction
quality. When a predictor is used periodically, as might the CDF
predictors defined in the preceding section, under-provisioning
applies only to the last prediction before the handoff.



Over-provisioning: Any time ¢ that the predictor indicates
that the user v may move from location ¢ to location j with
probability P(j|u,i,t), and a system provisions resources in
accordance with that probability, the resources are wasted if the
handoff does not occur as predicted. We define the amount of
over-provision as

Fui, j,t) = P(jlu,ist),

because an ideal predictor would have produced probability zero.
Thus, a lower value of F' represents better prediction quality.
When a predictor is used periodically, we can compute the over-
provision metric for each such prediction, under the rationale
that a system using such a predictor would waste resources at
predicted destinations whenever a handoff does not occur, or at
all locations other than the actual destination whenever a handoff
does occur, within that prediction interval.

As a more comprehensive representation of these metrics, we
compute per-user and per-AP averages; a non-uniform distribu-
tion would mean that some users or some locations were more
amenable to prediction than the rest. We define the average
under-provision per user as

_ Ei,j,t E(ua ia j7 t)

- )
Zi,j,t 1

and the average under-provision per access point as

Zu,i7t E(ua ia j7 t)
Zu,i,t 1

To compute the average per-user and per-AP over-
provisioning, we must pay special attention to how we normalize
the total error. For under-provisioning, measured only at the
destination and only at a handoff, the denominator is clearly the
number of handoffs. For over-provisioning, which is measured at
every access point and at every prediction attempt, the denom-
inator could be as large as the number of access points times
the number of prediction attempts. This approach underestimates
the error, however, in large networks where most transitions
1 — 7 simply never occur and any reasonable predictor produces
probability zero for those cases. We compensate by summing
over an indicator function g(¢, j), which represents, for each pair
of access points ¢ and j, whether any user has ever moved from
AP i to AP j. That s, g(i,j) = 1 if some user’s history includes
a move from AP i to AP j, and g(i,j) = 0 otherwise.

Accordingly, we define the average over-provision per user as

i U7i7j,t
F(u) _ Zz,],t ( - )
Ziy]’,t 9(i,7)
and the average over-provision per access point as

Zu,i,t F(u7 i7 ju t)

Zi,j,t g(la j)

In last two sections, we describe the metrics that we used, the
predictors that we evaluated, and the predictors’ uses. Table I
provides a summary of our discussion so far. We show the

evaluation results of the predictors according to theese uses in
the following section.

E(j) =

F(j) =

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of several predic-
tors using the metrics in the preceding section. First, we describe
the Dartmouth mobility data we used in our evaluation.

A. Evaluation data

The mobility data used in this paper was collected on Dart-
mouth’s campus-wide WiFi network, which provides 11 Mbps
coverage to the entire campus through over 500 access points.
Although outdoor coverage is not guaranteed, due to the com-
pactness of the campus, the interior APs tend to cover most
outdoor spaces. A typical day of activity includes between 2,500
and 3,500 users. The mobility data does not reveal the actual
position of the wireless user, but rather the identity of the access
point (AP) that serves the user at that moment. In some situations,
the user’s device will roam from AP to AP even when the user
does not physically move; the location may change although
the position did not. Hence, our evaluations are limited to the
predictor types that do not rely on more than such location
history. The collection and processing of the data is described
more fully elsewhere [15].

In this data set, each user’s trace is a series of times and
locations; the location is the name of an access point visited at
that time. The timestamp granularity is one second. The special
location “OFF” represents the user’s departure from the network,
which occurs when the user turns off their computer or their
wireless card, or moves out of range of all access points. In our
experiments, we do not compute the metrics for transitions to or
from location “OFE.”

We chose two months of data collected during fall of 2003 for
our experiments; specifically, October and November 2003. We
chose these two months because the data was nearly complete
(some other months are missing brief periods) and longer periods
are computationally expensive to simulate.

Our predictors process users’ traces in an online fashion, up-
dating internal tables and predicting each move where possible.
We compute our metrics only during the second month, using
the first month to seed the tables.

B. Results

We performed an extensive set of experiments to evaluate
our predictors with the aforementioned metrics. For conciseness,
we highlight our major findings using a smaller subset of these
experimental results.

1) Duration prediction: Intuition suggests that people tend
to stay at APs in specific patterns. One specific behavior we
expected was a similarity in the residence times. We first exper-
imented with Markov predictors to search for stationary patterns
in the user history. Note that, to conduct Markov predictions, we
needed to quantize the durations as symbols. Figure 1 explores
the performance sensitivity against different orders of depen-
dency on the previous durations as well as the sensitivity to the
quantization interval. The results demonstrate that a 10-minute
interval was about 20% less accurate than a one-hour interval for
the same order Markov predictor. The rightmost curve, i.e., the
O(2) Markov predictor with fallback using a one-hour interval,
is the best with a median value of 0.88. The worst is the O(2)
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Fig. 1. Duration prediction with per-user based location-independent (LI) Fig. 2. Duration prediction with location-independent (LI) or location-dependent

Markov predictor. The duration is quantized using one-hour intervals and 10-
minute intervals. The notation O(2f) means O(2) Markov with fallback.

Markov predictor without fallback using 10-minute interval, with
a median of 0.53. It is not surprising that the bigger interval led to
higher accuracy, because there was a higher probability that the
actual move falls within the interval. Moreover, with a bigger
interval the predictor had fewer states, reducing the chance of
failure. The lagging performance of O(2) with no fallback is
mainly due to the fact that we count the cases where predictor
cannot find a similar context before as unsuccessful predictions.
Yet, the fallback results suggest that whenever there is sufficient
context, O(2) provides better accuracy than O(1). The location-
dependent Markov duration predictors were less accurate than the
location-independent Markov predictors due to lack of sufficient
data to train the predictors.

Our experiments with Moving Average and CDF predictors
showed that Moving Average had better performance; Figure 2
shows its results. Since Moving Average predictor can operate on
continuous variables, we do not need to quantize the input to the
predictor. However, the accuracy metric itself requires that we
quantize the output of the predictor. With quantization interval of
one hour, we find out that the median accuracy varied from 85%
to 90% for the experimented prediction orders and dependencies.
Figure 2 explores different orders of Moving Average predictors
as well as the location dependence. Although the curves are
close to each other, the accuracies of the location-dependent
Moving Average predictors are slightly worse than the results
of the location-independent predictors. For both cases using a
one-hour interval, the curves of the results cross over and are
close. However, when using a 10-minute interval (not shown),
the higher-order predictors perform better than lower-order ones;

(LD) Moving Average predictors. The prediction output is quantized into one-
hour intervals to compare with the actual duration.

whereas, the location-independent predictors still are better than
location-dependent ones.

Although accuracy is a sensible measure for discrete in-
put/output predictors like the Markov predictor, it is not as suit-
able for continuous input/output predictors. Many applications
want to know how predictions deviated from the actual value.
Therefore, we used the earliness and lateness metrics to measure
the error of the duration prediction.

Figure 3 compares three predictors in terms of the earliness us-
ing each of their best observed results within a set of parameters
that we explored. Clearly, the Markov duration predictor was su-
perior. The CDF duration predictor was slightly less accurate than
the Moving Average duration predictor. Nonetheless, all of these
predictors failed to predict duration accurately for many users.
The median user experienced an average earliness of 604, 1156,
and 1218 seconds, for location-dependent O(2) Markov duration
predictor using 10 minutes interval, O(1) location-independent
Moving Average predictor, and CDF duration predictor using
probability 0.1, respectively. The 80% percentile user has an
average earliness of 1662, 1690, and 4479 seconds, for the above
three predictors, respectively.

Due to limited space we do not show the lateness results,
but we found even more skewed distributions and high mean
lateness. The median user had mean lateness of about 1000
to 10,000 seconds using the same set of predictors depicted
in Figure 3. Notably, the Markov predictor was far worse than
the Moving Average predictor, because there were relatively few
contexts with high residence times, leading to wildly inaccurate
predictions when durations were large.
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prediction, CDF duration prediction, and Moving Average duration prediction.
The curves in the plot are the best observed curves of each of their predictors,
across a set of parameters we explored. We truncated at 20,000 seconds.

The accuracy, earliness, and lateness metrics indicated that
a precise time prediction is not a realistic goal over our real
WLAN traces. This fact motivated us to investigate predictors
with soft outputs that represent the likelihood of the events rather
than their exact values, e.g., “what is the likelihood of leaving
the current location within 5 minutes?”” Such likelihoods in time
prediction may depend on how long the user has stayed in his
current location as well as the past history and predicted future
location. Since the accuracy, earliness, and lateness metrics are
not suitable to measure the quality of such predictions, we use
the under-provision and over-provision metrics to quantify the
errors in probabilities. In what follows, we present our results for
joint time and location prediction, i.e., the MarkovCDF predictor,
using under/over-provision metrics.

2) Joint Time and Location Prediction: For joint time and
location prediction, the MarkovCDF predictor returns a list of
possible next locations with the probability for each location, to
which the user may move within a specified time. In Figures 4-7,
we show the under-provisioning and over-provisioning per user
and per AP, where the latter helps us to understand whether the
predictability is an attribute of the location or of the user. Results
reflect the performance differences for different prediction orders
and for the cases when individual or aggregate histories are used.
In these experiments, the predictions were updated at the end of
every 60-second time slots, and the handoff probability in the
next 60 seconds was computed. As a comparison, we also show
the results of the Neighbor predictor in these plots.

For both under-provision and over-provision, lower values
(upper curves) represent better performance. Figure 4 shows the
CDF plots of average under-provision for users and Figure 5
shows the CDF plots of average under-provision for APs. The
aggregate-profile predictors used all users’ history information
so that if a particular user did not visit an AP before, the
predictor could still make a prediction based on the movements
of other users at that AP. The probabilities spread out over
many locations, perhaps far more than a single user usually
visited. Furthermore, the probabilities depended on how long
the user had stayed at the current location. Thus, for a given
time, the predictor might predict the user would move with
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Fig. 4. Average under provision for users. Neighbor is the Static Neighbor

Graph predictor. All the others are the MarkovCDF predictors. Aggregate table
and per-user table are compared. Lower “under provision” numbers are better.
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Graph predictor. All the others are the MarkovCDF predictors. Aggregate table
and per-user table are compared. Lower “under provision” numbers are better.

a low probability. The probabilities might also be skewed by
some extreme users who bounce back and forth among several
APs. Therefore, the provision at the location that the user
actually moved to was too little. In contrast, the individual-profile
predictor returned probabilities that reflected the user’s personal
mobility pattern so that the user was better provisioned.

The Neighbor predictor can predict a location that the user
had not visited before but it did not consider how long the
user had stayed in the location. It always expected the user
to move within the given period. As a result the Neighbor
predictor made higher under-provision than the individual-profile
MarkovCDF predictors. Although the Neighbor predictor beats
the aggregate-profile MarkovCDF predictors for most users, the
O(2) aggregate-profile MarkovCDF predictors made lower under-
provision for most APs than the Neighbor predictor.

Within each group of individual or aggregate profile
MarkovCDF predictors, the higher order predictors made lower
under-provisions because they made more accurate predictions.

Figures 6 and 7 show the over-provision metrics. Clearly, the
Neighbor predictor far over-provided due to its assumption that
the user will always leave within the period. The individual-
profile MarkovCDF predictors still fared better than the aggregate
profile predictors.

Both the under-provision and the over-provision were com-
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puted by accumulating the absolute errors of individual user’s
predictions. For our data set, however, there were more than
2000 users during each day. With some reservation policies, an
individual user’s over-provision may benefit other users who are
under-provided by their own prediction. To explore the overall
performance of the integrated location and time predictors, we
describe our VoIP case study in the next section.

VII. CASE STUDY

The results of the previous section indicate that it is in
general difficult to obtain very accurate predictions for handoff
times by relying only on the AP association history of WLAN
clients. In this section, we demonstrate this point by working
with a voice-over-IP (VoIP) application. This application is a
natural choice, considering the increasing popularity of VoIP
and related multimedia applications on WLANs. Furthermore,
voice has been extensively studied in the context of cellular
networks and this section complements those studies. Frangois
and Leduc studied mobility prediction’s influence on QoS in
wireless networks by examining call-block rate and call-drop
rate with arbitrary prediction accuracies [25]. In this paper,
we study the influence using the prediction results from real
traces. Another study [17], also based on the Dartmouth data set,
attempts to use location prediction to improve handoff latency in

VoIP calls in the context of Mobile IP. Improvement of handoff
latency is outside the scope of this paper. Instead, we focus on
using mobility prediction to reserve bandwidth for handoff calls.
The technology for implementing these reservations in various
networks is also beyond the scope of this paper.

The Dartmouth dataset contains both laptops and VoIP hand-
sets. There are about 150 PDAs and VoIP-dedicated devices.
Those VoIP devices only generate a small fraction of the total
traffic, but we see VoIP as emerging and increasing use of
the Dartmouth WLAN [19]. Increasingly, though, laptops are
also used to make VoIP calls. Although laptops are physically
stationary while making calls, they may sometimes roam to other
APs. Hence it is useful to make reservations at APs for laptops as
well. We expect that as the proportion of VoIP devices increases
on campus, the performance of our predictors will change, and
we plan to study those trends in future experiments.

In our scenario, the wireless network is capable of supporting
roaming telephone users. When a user has an ongoing call and
moves from one access point (AP) to another, we refer to that call
as a handoff call. When a user initiates a call while associated
with an AP, we refer to that call as a new call. All calls require
dedicated bandwidth at their current AP. If the AP lacks the
bandwidth for a new or handoff call, the call fails: a failed
handoff call is a “call drop” and a failed new call is a “call
block”. The literature often assumes that call drops are much
more frustrating to users than call blocks, so the goal of mobility
prediction in this particular application is to reserve bandwidth,
in advance of handoffs, to reduce call drops at the expense of
a small increase in call blocks. Specifically, we define the drop
rate and the block rate

number of dropped calls

DR =
number of attempted call handoffs’

BR— number of blocked calls

number of attempted calls’

Note the difference in the denominator of each equation. DR is
not normalized by the total number of calls, or even attempted
calls, but by the actual number of call handoffs, because every
handoff is an opportunity for a call drop, whereas only call
attempts are opportunities for call blocks.

We constructed a simulator to experiment with this scenario.
We drove user mobility within the simulator with the Dartmouth
mobility data, using the same two-month long subset as in the
preceding section. We generated a synthetic calling pattern to
model the hypothetical telephony behavior of these users.

We make the following assumptions about users and calls:

1) All calls require the same, fixed amount of bandwidth.

2) The bandwidth of an AP is fixed and the entire capacity
of every AP is used for VoIP calls. (Or, a fixed capacity
is reserved for VoIP calls.)

3) The duration of a call is exponentially distributed with
mean \g.

4) The length of each user’s inter-call time (between the
end of one call and the beginning of the next call) is
exponentially distributed with mean ;.

5) The calling behavior of every user on the campus shares
the same model and parameters.



6) When a user with an onging call goes OFF, the call will be
terminated gracefully (not counted as a call drop). When
a user is in the OFF state, no calls will be initiated from
this user.

A. Bandwidth Reservation Algorithm; Call Admission Control

Our predictor evaluations show that when predictors return an
exact handoff time as the output, the results are highly skewed,
and making distinct reservations for each user becomes imprac-
tical. Thus, we turn our attention to predictors that can return
soft values, i.e., handoff probabilities, and design reservation
mechanisms that dynamically allocate bandwidth for all handoff
calls using these soft values. Such a reservation policy benefits
from the law of large numbers provided that there are enough
number of users and a useful sense of stationarity exists in the
mobility patterns. Since the moving average predictor cannot
provide such soft values and the Markov predictor is (in effect) a
special case of the CDF predictor, we use only the CDF predictor
from the first part of the paper. We compare the simulation
results when the CDF predictor is used for predictions, with the
simulation results without prediction, and with the results of the
simulator using a less-intelligent predictor, namely the Neighbor
Predictor.

We experiment with four bandwidth reservation strategies that
install bandwidth reservations on behalf of all calls in progress,
using the predictors to anticipate next handoff location and time:

o Using all proportional probabilities non-normalized. For
some user, for instance, when the predictor outputs a vector:

< (A,0.4),(B,0.3),(C,0.2) >,

we reserve (0.4Bandwidth Units (BU) at access point A,
0.3BU at access point B, and 0.2BU at access point C,
where BU is the bandwidth required for a single voice call.

o Using normalized proportional probabilities. When, the
predictor outputs a vector such as

< (A,0.4),(B,0.3),(C,0.2) >,

0.4 : 0.3
we reserve 53753 BU at access point A BU

> 0.440.370.2
at access point B, and WBU at access point C,
where BU is the bandwidth required for a single voice call.
« Using top-3 normalized probabilities. When, the predictor

outputs a vector such as
< (A,0.3),(B,0.3),(C,0.2),(D,0.1), (F,0.1) >,

we ignore all but the top three and normalize; that is, we

reserve %BU at access point A, %BU

at access point B, and g=—33-55BU at access point C.
We do not reserve any bandwidth at access point D or E.
This method ignores the tiny probabilities, often numerous
in the prediction vector of the static neighbor predictor or
aggregate CDF predictor.

e One BU reservation at top 3 APs. When, the predictor
returns a vector such as

< (4,0.3),(B,0.3),(C,0.2),(D,0.1), (E,0.1) >,

we reserve 1BU each at access points A, B and C. As with
the previous case, we ignore APs with small probabilities.
This policy reserves up to 3BU, whereas the above policies
reserve at most 1BU. The purpose is to compare with prior
literature using this policy, and to avoid under-provisioning.

For the CDF-based predictors, all these strategies update the
reservations whenever a user starts a call successfully, every T'
seconds thereafter (where T is a design parameter) until the call
ends, and whenever the call is handed off to another AP. For
the static neighbor predictor, these reservations are placed as
soon as a user starts a call successfully and whenever the call is
handed off to another AP; the reservations are never updated as
the predictions do not change over time.

A given AP may hold reservations for many callers, and allows
itself to be overbooked (that is, the total reservations may exceed
the capacity of the AP). Any incoming handoff call will be
accepted (not be dropped) whenever there is sufficient unused
bandwidth regardless of how much bandwidth is reserved by this
or any other caller; otherwise it is dropped. If the arriving caller
had a reservation, its contribution to the reservation pool is also
removed. A new call will be accepted whenever there is sufficient
unused and unreserved capacity; otherwise it is blocked. Thus,
handoff calls have priority over new calls, and reservations may
reduce call drops but may increase call blocks.

We summarize our admission-control procedure with pseudo-
code. For each AP, let C' denote the total capacity, U denote
the bandwidth used by current calls, R denote the bandwidth
reserved, and let R, denote the reservation of user u at this
AP, according to one of the above policies. For any AP, the
reservation algorithm is as follows:

« Whenever reservations R,, are updated,

« When a new call begins,

if (U+ BU < C — R) Il unreserved bandwidth available
then U = U + BU; // call allowed to begin
else call is blocked,;
¢ When user uw with an active call handoffs to this AP,
if (U+ BU < C) Il any bandwidth available
then U = U + BU, // call allowed to continue
else call is dropped;

R=R—- Ry
¢ When a call ends or leaves the AP,
U=U- BU,;

B. Traffic Generation

As mentioned above, we generate a synthetic calling pattern
for each of our users. The duration of a call is exponentially
distributed with mean A\yz. The length of each user’s inter-call
time (between the end of one call and the beginning of the next
call for the same user) is exponentially distributed with mean ;.

The Dartmouth network is not yet heavily loaded. To increase
congestion, we set both the mean duration A\; and the mean
inter-call time \; to 15 minutes (900sec).

C. Training

The quality of predictions in the CDF predictors depends on
whether, in the past, there have been enough observations at the
APs where the user will be associated. To prevent such lack



of observation, we train the predictor with the mobility data
of the first month without making actual reservations, and start
bandwidth reservations at all APs in the second month. Thus,
when training is applied, we measure the application performance
during the second month only. For the sake of completeness, we
also provide the performance results with no predictor training.

D. Results

We ran our simulation using the following predictors:

o MarkovCDF O(2f) Individual predictor,

o MarkovCDF O(2f) Aggregate predictor,

« Static Neighbor predictor trained on the October 2003 data.
The two MarkovCDF predictors were run with and without
training. All three predictors were run with the four reservation
strategies described above.

We ran each case 10 times, each time with a different seed
for the traffic-generation module. Unless otherwise mentioned,
the AP capacity C=5BU and T is 300sec. We plot the relative
improvement in the drop rate (Figure 8) and relative worsening
of the block rate (Figure 9) as compared to a system without
prediction-based bandwidth reservation. Note that these plots
show the means of the ratios, with mean computed across the
many seeds; that is, we compute for each predictor A

DR using no predictor
DR using predictor A

mean( ) and

BR using predictor A
BR using no predictor

mean( ).

In the accompanying plots, Base DR is the DR using no
predictor and Reserved DR is the DR after using a given predictor
A. Similarly, Base BR is the BR using no predictor and Reserved
BR is the BR after using predictor A.

The reason we use improvements and worsenings in the plots
rather than the nominal values is that the DRs and the BRs vary
greatly over the different seeds to the call generation module.
Hence it makes more sense to summarize the improvements in
the DR and the worsenings in the BR. To read the plots, if the
value for the “Base DR/Reserved DR” ratio was 2, we say that
the DR without prediction was double the DR with prediction.
Similarly, if the value for the “Reserved BR/Base BR” ratio was
1.5, we say that the BR with prediction was 50% higher than the
BR without prediction.

In Figure 8 and Figure 10 we observe that the Base
DR/Reserved DR ratio lies between 1.4 and 22.4. From Table II
we can see that the average DR with no prediction was 13.8%;
prediction-based bandwidth reservation reduced DR to between
0.7% and 10%. We see that the individual predictors tended to
perform better than the aggregate predictors in terms of DR and
BR. This implies that an individual user was more likely to repeat
her own patterns than to follow others’ patterns at the same AP.

Intuitively, if the DR improves, the BR should worsen and
vice versa. In an extreme case, the entire bandwidth would be
reserved for handoff calls and all new calls would be blocked. It
is expected that the choice of predictor depends on what BR one
wishes to tolerate. Table II shows that on average the BR with
no prediction was 11.7%. With reservation, the BR increases to
between 14%-41%. The 40% BR was observed in the case of the
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TABLE II
ABSOLUTE VALUES OF CALL DROP RATE (DR) AND BLOCK RATE (BR) WITH TRAINING

Reservation Scheme No Prediction MarkovCDF Individual | MarkovCDF Aggregate | Neighbor Graph

AverageT ot Average o Average o Average o
All normalized 13.80 7.58 2.98 2.23 7.01 4.73 0.69 0.51
drop-rate All non normalized 13.80 7.58 5.57 3.86 10.04 6.03 0.69 0.51
(DR) Top-3 1 BU 13.80 7.58 2.74 2.01 4.36 3.53 0.96 0.58
Top-3 normalized 13.80 7.58 3.03 2.23 4.28 3.48 1.24 0.74
All normalized 11.74 10.35 18.72 14.1 18.84 12.98 33.23 19.31
block-rate | All non normalized 11.74 10.35 14.51 12.13 12.88 11.05 33.23 19.31
(BR) Top-3 1 BU 11.74 10.35 20.24 14.50 26.81 13.51 40.61 17.66
Top-3 normalized 11.74 10.35 18.85 14.14 22.56 14.15 33.48 18.94

TThe values in the average column are means of the percentage rates over 10 seeds in the simulation.

1The o value is the standard deviation over these seeds.
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Fig. 11. The ratio (Reserved BR/Base BR) for all the Predictors, where

MarkovCDF predictors had no training. The error bars show the standard
deviation o among the various seeds of the simulation. A higher ratio is better.

Neighbor predictor. It is clearly important to reserve bandwidth,
but not too much. The ideal ratio may be achieved by the right
choice of predictor and by tuning parameters such as 7.

As we can see from the trained data set (Figure 8 and
Figure 9), the MarkovCDF individual predictor came closer
to achieving this balance than did the MarkovCDF aggregate
predictor. Specifically, the MarkovCDF individual predictor im-
proved the drop rate more than the MarkovCDF aggregate
predictor, while at the same time it worsened the call-block rate
to a lesser extent. We attribute the better performance exhibited
by the individual predictor to the higher probabilities being
returned by the MarkovCDF individual predictor for the more
likely APs. Remember that the MarkovCDF aggregate predictor
still tries to return predictions for individual users based on the
hypothesis that most users move in a similar fashion at different
locations. However, individual user behavior was not accurately
predicted using aggregate history, probably because users were
not as alike as expected. In the extreme, if the individual histories
were independent from each other, then the aggregate history
cannot statistically represent the individual moves that we want
to predict.

Notice in Figure 9 that the standard deviation in the worsening
of the BR was high, although the standard deviation for the
improvement in DR was low. Hence, although there was an
inverse relation between the DR and the BR on the average,
the specific hand-off statistics and call patterns had significantly

different effects in individual simulation runs, affecting BR more
the DR. A stable DR is desirable, perhaps more so than a stable
BR. Ideally, both DR and BR would be stable.

The “top-3 probabilities normalized” reservation scheme did
not provide much benefit for the MarkovCDF individual predic-
tor in terms of BR. The reason is that there are often not many
more than 3 APs in the prediction vector of the MarkovCDF
individual predictor anyway. So the limit of 3 that the “top-3
probabilities” scheme imposed is superfluous.

The MarkovCDF aggregate predictors benefited from the “top-
3 probabilities normalized” scheme in terms of DR, because con-
centrating of reservations at fewer APs provided more resources
for users on the network that have similar behavior. Due to these
large reservations, however, there was more blocking and hence
a higher BR.

The neighbor graph predictor performed worse using the “top-
3 probabilities normalized” reservation scheme in both metrics.
The drop rate did not improve as much as the “all probabilities”
scheme because the “top-3” scheme made few reservations. The
block rate worsens slightly more because of the concentrated
reservations, similar to the MarkovCDF aggregate predictor.

In our simulation, the “top-3 probabilities 1 BU” scheme only
provides slight benefit in DR over the others and worsens the
BR considerably more. The reason is that it reserves 3BU per
prediction rather than 1BU, system wide. Hence any scheme
with proportional probabilities is recommended.

For the two MarkovCDF predictors, the normalized version of
the “all probabilities” reservation scheme improves DR more than
the non-normalized version at the cost of higher BR. Clearly the
reason is that there are larger reservations made on behalf of the
user. The trade-off here is between DR and BR. The Neighbor
predictor is unaffected because the probabilities it returns are
normalized to begin with.

While comparing the simulations with the trained predictors
against the simulations with the untrained predictors we recall
that the neighbor predictor is trained with the first month’s
data regardless, but it did not learn during the second month
like the MarkovCDF predictors do. As expected, the training
in the MarkovCDF predictors generally benefits the DR while
worsening the BR to a lesser extent.

These results show that even with moderate prediction accu-
racy, we can improve the DR, while not worsening the BR as
much. We see that the simplistic neighbor graph predictor will
block considerably more calls than is acceptable in most systems,
because it cannot predict time at all. Using the predictors that



we have presented helps us to be more discriminating in our
reservations. Furthermore, the choice of the reservation schemes
with the predictors is important.

VIII. SUMMARY

In this paper, we focus on quantifying the quality of mobile
handoff predictions in a real large-scale WLAN environment.
We experiment with a variety of mobility predictors, all of
which predict the time of a mobile user’s next handoff event,
and some of which jointly predict the destination as well. We
select predictors such that their success would depend on certain
dependencies across space and time. We further investigate
whether group mobility or individual mobility models better
represent the real situation. After evaluating these predictors with
a suite of performance metrics, we find that no single predictor
feature performed uniformly well, i.e., the prediction quality
varies widely from user to user and from access point to access
point. In the over- and under-provisioning results, for example,
we find the distributions to be highly skewed.

Our results show that predicting the precise time of the handoff
with a granularity in the order of seconds and minutes is in
general not possible by using only the association history of
the mobile devices. These results drive us to explore predictors
that can return a range of values, can express confidence in
their prediction (a probability), and can express inequalities (the
probability that the visit will last at least ¢ seconds, rather
than predicting departure after precisely ¢ seconds). We observe
that predictions for individual events still tend to be highly
skewed even for such soft prediction outputs. This motivates us
to look into applications that could manage such skewness and
benefit from soft values. Thus, we look at a popular application,
i.e., VoIP over WLAN, that can use per-user predictions to
reserve resources for a group of users (in our case, the handoff
users). Indeed, our results demonstrate that when coupled with
intelligent predictors, VoIP performance improved significantly
over the cases when only simple predictors are allowed or when
no reservations are made at all.

Note that our main concern in this paper is on quantifying
how campus WLAN mobility data was amenable to useful
predictions. Therefore, we do not pay any particular attention
to predictor complexities and efficient system implementation
details, which can be tackled once the significant advantages of
mobility predictions can be shown. This challenge will be part
of our future research.
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