SCHEDULING DATA TRANSFERS IN PARALLEL
COMPUTERS AND COMMUNICATIONS
SYSTEMS

by

RAVI KUMAR JAIN, B. Sc., M. S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December, 1992

To my parents and my sister

S. K. Jain, S. Jain, and Poonam

Acknowledgments

It is politic to begin a dissertation acknowledgement with a formal statement
of thanks to the advisor. However, my cynicism about academic conventions
is completely overshadowed by the fact that I have truly been fortunate to
have had not one, but two, of the best advisors a graduate student could
hope for: Jim Browne and John Werth. I am grateful for their support and
guidance, of course; but more importantly I appreciate their confidence in
me and, dare [say it, their encouraging me to believe in myself. I especially
appreciate John Werth, not only for his technical insight and the countless
long hours he has spent with me, but for being the warm, wise and wry human

being that he is.

I would also like to thank Galen Sasaki for his technical guidance, particu-
larly during the early stages of this work. Jeff Brumfield, while not on my
committee, has been a great source of advice and support. Thanks are due

to Al Mok and Allen Emerson for serving on my committee.

There have been many friends and colleagues who have helped me survive
the graduate school game at Texas. I owe thanks to Michael Barnett, Ted
Briggs, Rick Froom, Peter Newton, J. R. Rao, and Ravi Rao, among others.
Life in Austin was made possible by Dilip D’Souza, Carla Feldpausch, Julia

v

Fitzgerald, Veena Gondhalekar, Pradeep Jain, Regina Lauderdale, Claire Loe,
Ricardo Salvatore, and others; their friendship nourished me through many
academic winters, and made the rat race bearable. I owe a great deal to the
caring and support of my family in Austin: Prem, Kumkum, Sandhya, Neha
and Sumeet. Finally, I owe thanks to Meera Saxena (without whom etc. -

but it’s really true).

This research was funded by the State of Texas through TATP Project 003658-
237 and the IBM Corporation through grant 61653.

Ravi Kumar Jain
The University of Texas at Austin
December, 1992

SCHEDULING DATA TRANSFERS IN PARALLEL
COMPUTERS AND COMMUNICATIONS
SYSTEMS

Publication No

Ravi Kumar Jain, Ph.D.
The University of Texas at Austin, 1992

Supervisors: J. C. Browne, John S. Werth

The performance of many applications of parallel computers and communica-
tions systems is limited by the speed of data transfers rather than the speed
of processing. An important, but neglected, aspect of resource management
to overcome this bottleneck is the scheduling of data transfers. Data transfer
scheduling differs from traditional scheduling problems in that data transfer
tasks require multiple resources simultaneously, rather than a single resource

serially, in order to execute.

We study the data transfer scheduling problem by first defining a general
model for precisely specifying and classifying scheduling problems. We use

the model for the recognition of the similarity of seemingly different problems

vi

from different application areas, for the systematic transformation of one pr-
oblem specification into that of a seemingly different problem, and for the

systematic decomposition of a problem specification into solvable subprob-

lems.

We obtain polynomial-time, optimal and approximate algorithms for a wide
range of data transfer scheduling problems under a variety of architectural
and logical constraints, including communication architectures in which re-
sources are fully connected, communication architectures with a tree topology,
and the presence of mutual exclusion and precedence constraints. Our algo-
rithms either generalize previous results for these problems, or provide better

performance, or both.

Our results are applicable to both parallel computers and communications
systems, including certain types of shared-bus multiprocessor systems such as
the Sequent and the IBM RP3, hierarchical switching systems, tree-structured

multiprocessor architectures, and intersatellite communications systems.

vii

Table of Contents

Acknowledgments iv
Abstract vi
Table of Contents viii
List of Tables xiv
List of Figures xvi
1. Introduction 1
1.1 The parallel I/O bottleneck 4
1.1.1 Historical perspectiveo 4

1.1.2 Scheduling parallel I/Oo 6

1.1.3 The structure of I/O requests 8

1.2 Data transfers in communications s¥stems 9

viii

1.3 Simultaneous resource scheduling 11

1.4 Statement of the problem 12
1.5 Researchapproacho 15
1.6 Summary of results obtained 17
1.7 Organization of the thesis 18
. A Model for the Scheduling Problem 20
9.1 Basic Definitions « « « oo oo oo 20
2.2 Allocation and Assignment Problems 23
2.3 Definition of the Scheduling Problem 28
2.4 Example: Multiprocessor scheduling 33
2.5 Comparison With Other Models 37

. Optimal Scheduling in Bus Architectures and TDM Switches 40

31 OVEIVIEW » « v o v e e e e e e e e e e e e e 43
3.2 Definitions and problem formulation 43
3.3 An algorithm based on max-min matching (KT) 48

ix

34

3.6

3.7

3.8

3.9

An improved scheduling algorithm (A1) 54

A divide-and-conquer scheduling algorithm (A2) 55
An algorithm for large transfer lengths (A3) 62
Experimental evaluation 65
3.7.1 Effect of varying the number of transfers 69

3.7.2 Effect of varying the degree of data transfer parallelim 71

3.7.3 Effect of varying the number of resources 72
3.74 Effect of large transfer lengths T4
Interaction of theoretical and experimental evaluation 75
3.8.1 Effect of number of transfers 76
3.8.2 Effect of data transfer parallelism 80
3.8.3 Effect of transfer lengths 81
DiSCUSSION « « v v v v v v e e e e e e e e e e e e e 83
39.1 Previousrelatedworko 83
3.9.2 Conclusions and future work 88

X

4. Heuristics for Scheduling in Bus Architectures and TDM

Switches 91
4.1 The Highest Degree First (HDF) Heuristic 93
411 The Unit — SimpleDTS Problem 93

412 TheUnit— DTS Problem 101

4.2 The Highest Combined Degree (HCDF) Heuristic 103
4.3 Comparison of experimental and theoretical results 105
4.4 DISCUSSION « « v v v v e e e e e e e e e e e e e e e e e e 107
44.1 Previousrelatedwork. 107
4.4.2 Conclusions and further work 109

5. Scheduling in Hierarchical Architectures 111
5.1 Definition of the problem 113
5.2 Three Practical Applications 115
5.3 The Tree scheduling algorithm 118
5.3.1 Basic definitions and notation 118
5.3.2 The scheduling algorithm 121

xi

5.4 A time efficient design

......................

.....................

5.5 Experimental evaluation

5.6 Discussion

.............................

5.6.1 Previous related work

...................

5.6.2 Conclusions and Further Work

. A Fast Heuristic for Hierarchical Architectures

6.1 A greedy heuristic

.........................

6.2 Experimental evaluation of the greedy heuristic

........

6.3 Discussion e e e e

. Scheduling in Extended Hierarchical Architectures

7.1 Systems with local and remote data transfers

..........

7.1.1 Specification of the problem
7.1.2 The parallel I/O application
7.1.3 The intersatellite communications application
7.1.4 The decomposition heuristic
7.2 Systems allowing arbitrary preemption
7.3 Applications to packet radio and transceiver systems

7.4 Conclusions and future work

...................

x11

8. Scheduling Tasks Under Mutual Exclusion and Precedence
Constraints 170

8.1 Mutual exclusion constraints

................... 171

8.1.1 Problem definition 171

8.1.2 Limited Mutual Exclusion Constraints 173

8.1.3 Transformation 174

8.2 Precedence constraints 181
8.2.1 Furtherwork, 183

8.3 Discussion, 184
8.3.1 Previous related work L. 184

8.3.2 Conclusions and further work 186

9. Conclusions and Further Work 188
BIBLIOGRAPHY 191
Vita 207

xiil

21

2.2

3.1

3.2

3.3

5.1

5.2

5.3

List of Tables

Previous work for non-preemptive multiprocessor scheduling. 36

Previous work for preemptive multiprocessor scheduling. . .. 37

Asymptotic theoretical vs. experimental behavior of algorithms

as input parameters vary. (See following Table also) 76

Revised asymptotic theoretical vs. experimental behavior of

algorithms as input parameters vary 83
Summary of previous related worko 85
The Tree algorithm 124

Behavior of Tree as number of senders is varied for balanced

binary trees of unit capacities and unit-length transfers 134

Behavior of Tree as maximum transfer length is varied for

balanced binary trees of unit capacities and 64 senders 134

xiv

5.4 Behavior of Tree as user link capacity is varied for balanced

binary trees of 64 senders

XV

1.1

2.1

3.1

3.2

3.3

3.4

3.5

4.1

List of Figures

Parallel I/O scheduling example 14

Specification of a job-shop example 33

CPU time versus number of transfers for n = 64, k = 4, K =1 70

CPU time versus number of simultaneous transfers for n = 64,

Mm=1000, K =1 .\ oo 72

CPU time versus number of resources for k = 4, m = 1000, K

CPU time versus maximum transfer length n = 64, k = 4, m

=1000 e e e 5

CPU time on Solbourne versus maximum transfer length for n

6L k=8 m =100 . . . 82

Example construction to show HDF takes up to 2d — 1 colors
to color a graph of degreed 98

4.2

4.3

5.1

5.2

5.3

5.4

9.9

5.6

5.7

5.8

CPU time versus number of transfersfor k =4 106

CPU time versus number of simultaneous transfers possible for

m=1000 106
Model of a tree-structured architecture 114
SS/TDMA hierarchical switching system 116
Hierarchical switching system 117
Switching system graph (V,E) 119
Network model G = (V,E*) 126

CPU time versus number of senders or receivers for unit-length

transfers and complete binary tree architectures 133

CPU time versus maximum transfer length for complete binary

tree architectures with 64 senders 135

CPU time versus user link capacity for complete binary tree

architectures with 64 senders 136

xXvii

6.1

6.2

6.3

6.4

6.5

6.6

7.1

7.2

CPU time for GRA and Tree versus number of senders or
receivers for unit-length transfers and complete binary tree ar-

Chitectures . . . v v e

Maximum and average penalty paid for using the GRA heu-
ristic instead of the Tree algorithm, versus number of senders
or receivers for unit-length transfers and complete binary tree

architectures i i e e e e e e e e e e e e e e e

CPU time versus maximum transfer length for GRA and Tree

for complete binary tree architectures with 64 senders

Penalty paid for using GRA versus maximum transfer length

for complete binary tree architectures with 64 senders

CPU time versus user link capacity for GRA and Tree for

complete binary tree architectures with 64 senders

Penalty paid for using GRA versus user link capacity for com-

plete binary tree architectures with 64 senders

AG for the scheduling problem with local and remote transfers,

LocalRemote DTS o o e e e e e e e e e e e

Sequent architectureo

. 151

. 1581

7.3

7.4

8.1

8.2

8.3

Example ISL communications system - 161
Applying the decomposition heuristic« . . oo 164
Limited mutual exclusion constraints 174
Example mutex transformation e 175
Example PG satisfying RSA-RZooo v 176

Xix

Chapter 1

Introduction

Extracting optimal performance continues to be a critical issue in computing
and communications systems. Even as faster parallel computers and high-
speed communications networks become available, newer applications such as
image visualization and real-time databases stretch the limits of their per-
formance. Improvements in underlying technology alone are insufficient to
keep pace with these increasing demands. Sophisticated management of the
resources provided by cheaper technology is required. An important compo-
nent of resource management is scheduling, and in particular the scheduling

of data transfers.

In this dissertation we study the scheduling of data transfers in parallel com-
puters and communications systems. We obtain a general model for specify-
ing scheduling problems which allows us to identify useful results in different
application areas, and extend and apply them across application areas. We
obtain optimal and approximate algorithms for a wide range of data transfer

scheduling problems under a variety of architectural and logical constraints.

We focus on data transfer scheduling because this component of resource

1

management has long received insufficient attention in the area of parallel
computer systems. For many applications it is not the processors but the
data transfers for input/output (I/O) that are the bottleneck in parallel co-
mputer system performance. The continuing increase in computing speed
relative to the speed of I/O devices, and the increasing 1/O demands of new
applications, indicate that the I/O bottleneck will be even more serious in the
future. Parallel computer systems will not fully realize their potential perfor-
mance, unless not only the computation but the I /O is performed in parallel,
and equally importantly, unless the I/O resources and parallel 1/O tasks are
managed efficiently. However, while the scheduling of multiple processors
has been studied extensively, there has been almost no study of scheduling
parallel I/O tasks.

For communications systems, on the other hand, particularly satellite switch-
ing systems, scheduling data transfers has been studied for over a decaﬂe.
Since the mid-80’s, research on scheduling file transfers in computer networks
has also been pursued. Nonetheless, improvements continue to be necessary
as satellite and computer communication networks become ubiquitous, am-
bitious satellite networks using intersatellite communications links become

operational, and new applications generate increasing data transfer demands.

Previous work done on scheduling over the last several decades in the fields
of operations research, management sciénce, and engineering, is typically not
applicable to the problem of scheduling data transfers. The reason is that
data transfer tasks require multiple resources simultaneously, rather than a
single resource serially, in order to execute. Almost all previous work on

scheduling theory has concentrated on the single-resource-per-task situation.

3

Thus extracting optimal performance requires abandoning traciitional sched-
uling techniques and developing new algorithms and heuristics that perform
simultaneous resource scheduling. The techniques that have been developed
for data transfer scheduling in communications systems are an exception; al-
most all other work has concentrated on studying single resource scheduling

problems such as job-shop scheduling, flow-schop scheduling, and the like.

It is typical of the fragmentation of the scheduling literature that previous
research on data transfer scheduling for satellite communications has been
performed and reported using specialized notation, jargon and narrow as-
sumptions which hold only in the context of that application. The situation
is further exacerbated by the explosion in the quantity of published research
on scheduling since the 1950s. The consequence is that it is difficult to rec-
ognize when a scheduling problem in one application area has already been
studied for a different application, let alone transfer research results across
application areas. Thus, for instance, the results on scheduling data transfers
in communications systems have not previously been applied to other appli-
cations such as scheduling parallel I/O, even though they provide potentially
useful techniques and insights. What is required is a means of specifying and
classifying scheduling problems, as well as solution techniques and algorithms,
in a uniform abstract framework that exposes the underlying similarity of sch-

eduling problems in diverse application areas.

To summarize thus far, we have outlined four motivating issues. Firstly, the
scheduling of data transfers is a neglected but increasingly important compo-
nent of resource management for extracting optimal performance from paral-

lel computer systems. Secondly, while datz transfer scheduling has received

some attention for czmmunications systems, increasingly complex systems
and applications demand improved techniques. Thirdly, previous results on
scheduling do not apoly to data transfer tasks since data transfers require
multiple resources simultaneously in order to execute. Finally, a uniform
abstract framework i required for specifying scheduling problems and their
solutions so that the benefits of research results can be transferred across

application areas. Inzhis dissertation we address all four issues.

In the rest of this ciapter we discuss these issues n more detail, outline
our research approaci. specify the specific problems that we will attack, and
summarize the resubs we have obtained as well as suggestions for future

work.

1.1 The paralel I/O bottleneck

We discuss the paralizl /0 bottleneck in detail in this section. We first give a
historical perspective. We then motivate the use of parallel I/O scheduling as

an important additior to the solutions being developed to address the parallel

I/O bottleneck.

1.1.1 Historical yerspective

It has long been rewognized that a memory hierarchy is required in order
to satisfy the data =quests of a CPU, and that the mechanical delays as-

sociated with input outiput (I/O) devices represent a significant potential

bottleneck in computer system performance (see Gibson [59] for a historical
review). Indeed, the introduction of multiprogramming in computer systems
was motivated by the need to overcome the sequential I/O bottleneck [26].
Nonetheless, “Input/Output has been the orphan of computer architecture”
[68], and the I/O subsytem has received disproportionately little attention in

sequential computer system design.

The I/O subsystem has received even less attention in the design of parallel
computer systems. However, since the early 80’s there has been a growing
awareness of the I/O bottleneck in parallel systems [12, 16, 17]. It was in the
early 80’s that the performance of database machines designed in the late 70’s
(e.g. DIRECT [35]) were found to be severely constrained by I/O bandwidth
[12). While the I/O bottleneck remains a central concern in database ma-
chine architecture today [36, 13, 117], in recent years the concern has spread
to general purpose supercomputers {131, 59, 103, 18] as well as mid-range and
low-end machines [1]. As a case in point, while the early hypercube computers
neglected the I/O subsystem, there have recently been many efforts to address
the I/O bottleneck in hypercube system [14, 65, 116, 118, 121, 44, 57]. In fact,
it has recently been argued that the data transfer capabilities of a system,
including its I/O capabilities, should replace processing speed as the funda-
mental performance metric. For instance, Smith et al [131] predict that “The
performance of supercomputers will ultimately be measured by how fast they
can move data both within the system and across the network”. Similarly,
Jordan argues that for high performance systems, instead of the peak floating
point rate, “A better measure of computer performance is data transport ca-
pacity” [84]. In addition, within the last year the parallel I/O bottleneck has

been receiving substantial attention in the industry and general professional

literature e.g. [67, 104, 18])

1.1.2 Scheduling parallel I/O

There are shree basic reasons for the existence of the parallel I/O bottleneck.
The first i the increasing discrepancy between the speed of computation and
the speed of 1/0. The second is the dramatic increase in the data demands
of new ap:lications such as image visualization and real-time databases. The
third is tie inability of dynamic RAM, despite its spectacular advances, to
replace sezondary storage devices. (See Gibson [59] for a detailed discussion

of these issues).

Several atiempts have been made to address the parallel I/0 bottleneck in
the last few years. They include approaches such as decreasing the number
of 1/O reciests (improved or larger caches, larger block sizes, improved data
allocation <o allow contiguous files), increasing the parallelism of I/O requests
(overlapping 1/0 with computation where possible, using asynchronous 1/0),
decreasing average disk access times (reducing utilization, introducing buffer-
ing, schecling requests that are waiting at the disk controller), special 1/0
devices ard controllers (multiple I/O processors, optical disks), and replacing
secondary storage by RAM (or optical RAM). As argued by Gibson [59], none

of these zzproaches provides a general-purpose solution that is satisfactory.

An imporiant class of new approaches has been the introduction of synchro-

nized disk interleaving [88], and disk striping [124] or data declustering [97].

The disk array approach [82], in particular Redundant Arrays of Independent
Disks (RAID), combines the benefits of these approaches with increasing the
ratio of disk heads to user data [113, 59].

For applications with high data demands for entities (e.g. files) of known
size stored at known locations, and where the demand is relatively irregu-
lar, scheduling parallel I/O operations is an attractive addition to the set
of techniques available for attacking the parallel 1/O bottleneck. While the
scheduling of I/O operations has been studied in the context of sequential
computer organizations [33], the potential for improving parallel system per-
formance by scheduling parallel I/O operations has been almost completely
neglected.

As discussed below, review of previous work reveals that almost all previous
research on parallel scheduling deals with tasks which require only a single
resource at any given time. Single resource scheduling is not relevant for
parallel scheduling of I/O operations where each operation requires multiple
resources (e.g. processor, transfer media and external memory) in order to
execute. Serial acquistion of multiple resources does not in general lead to
optimal schedules; algorithms which simultaneously assign multiple resources
to the members of a request set are required. This dissertation focuses on

algorithms appropriate for centralized scheduling of batched 1/O operations.

1.1.3 The structure of I/O requests

The conditions for scheduling to be effective are that there are choices to
be made which affect performance, and that there are resource bottlenecks
whose utilization can be improved by scheduling. The nature of the stream
of 1/0 requests and the resource configuration determine whether these con-
ditions hold, and if so, the characteristics of scheduling algorithms that will

be effective.

The stream of I/O requests generated by multiprogrammed workloads is
largely uncorrelated and has traditionally been scheduled dynamically at the
level of device controllers or channels. There is usually sufficient randomness
among requests to avoid long queues at any given disk so that scheduling
parallel /O operations above the controller level is of little benefit. How-
ever, the amount of correlation among 1/0 requests varies substantially with
the application. Certain applications, such as 3D migration codes in seismic
processing where the solution progresses systematically across a coordinate
space, yield highly structured and totally predictable patterns of requests for
data. In this case scheduling of I/O requests is of little benefit since the order
of the requests can be predicted in advance and thus the problem reduces to
" one of assigning data to storage devices so as to minimize conflicts (17, 85].
On the other hand, certain families of applications, such as 3D visualization
and decision support systems, pass through phases with different degrees of
parallelism in computation and I/O requests. These applications, whether
executing in parallel or sequentially, generate I/O requests in bursts as the
locality of the data to be displayed or analyzed changes. It is often the case

that the entire set of requests must be satisfied before the computation can

proceed. These families of applications may benefit substantially from batch-
oriented scheduling of parallel I/O operations if resource bottlenecks exist in

the 1/0 system architecture.

As far as resource bottlenecks go, it is typically the case in large-scale parallel
architectures that there are fewer access paths to I/O devices than either I/O

devices or processors. This is commonly observed in current bus-oriented

architectures (e.g. [100]).

The combination of bursts of I/O requests and potential resource bottlenecks
suggest that there may be utility in efficient algorithms for generating parallel
schedules. Efficient algorithms are needed because they will be executed re-
peatedly during the execution of the applications. This dissertation develops
and characterizes algorithms which are applicable to a significant class of I/O

system architectures.

1.2 Data transfers in communications systems

In contrast with parallel computer systems, the desirability of scheduling data
transfers in communications systems has long been observed and accepted.
There are two major applications areas where it has been actively pursued:

satellite communications and computer networks.

The first operational communications satellite was deployed in 1965. Some of

the earliest work on data transfer scheduling dates to the late 70’s [75, 87, 38].

10

In satellite switching systems, the motivation for scheduling has arisen from a
need to maximize utilization of switch hardware, or minimize the number of
times that the switch has to be reconfigured for a given set of input transfers,
or to minimize the probability that an incoming transfer is blocked because
either an input port or an output port of a switch is unavailable. In time
division multiple access (TDMA) satellite switches, this problem is known as
the time slot assignment problem. There is a substantial literature on various
aspects and approaches to this problem [75, 74, 9, 10, 7, 39, 111, 66, 11, 53,
96, 19, 20, 54, 21, 22, 81, 77, 125, 126, 136, and references therein] which will

be reviewed at the end of each relevant chapter as necessary.

Another area where scheduling data transfers in communications systems
arises is the scheduling of file transfers in a computer network. The earliest
work on this dates to the mid-80’s, starting with Coffman et al’s landmark
paper [27]. Typically the objective here is to minimize the total amount of
time that the transfers take to complete. In contrast to the work on satellite
switching systems, research has tended to consider general communications
topologies, non-preemptive transfers, and diverse kinds of communications
devices, such as transceivers. Nonetheless, the underlying issues in the two
application areas are very similar; once again it is symptomatic of the method-
ology in scheduling research that there is almost no recognition of this fact
and no attempt to exploit it. The literature on this problem is not as large as
for satellite switching - perhaps because of the remarkable number of results
already contained in the original Coffman et al paper - but it is still significant
[27, 23, 24, 25, 66, 142, 77, 125, 101]. Tt will be reviewed at the end of each

relevant chapter as necessary.

11

While there has been substantial work on data transfer scheduling in com-
munications networks, improvements continue to be necessary. Most of the
scheduling algorithms have high time complexities that make them imprac-
tical, particularly for the satellite communications application. Moreover,
ambitious satellite communications systems which were only being discussed
in the research literature as little as a decade ago, such as satellites connected
by intersatellite links [87], are now being designed. These communications
systems present a host of new challenges and constraints that alter the sat-
ellite switching environment considerably. Finally, for both satellite systems
and terrestrial computer networks, new applications such as scientific visu-
alization [32, 110, 2], videoconferencing and multimedia information systems
[139, 43, 90, 120}, and personal communications services [99, 73] are creating

tremendous demands on the available communications resources.

In this dissertation, we will explicitly address the concerns of obtaining faster
scheduling algorithms and heuristics, covering more sophisticated communica-
tions architectures such as networks using intersatellite links, and applications

such as 3D visualization of scientific data stored in image databases.

1.3 Simultaneous resource scheduling

One of the reasons that there is little previous work that applies to scheduling
data transfers is that the problem involves simultaneous resource scheduling.
The vast majority of previous work on scheduling resources concerns sched-
uling tasks which require a single resource at a time. In computer science,

this includes the tremendous amount of research on disk, drum and CPU

12

scheduling carriec o=t in the late 60’s and 70’s [129]. It also includes most
of the research or sc==duling tasks on multiprocessors carried out since then;

this literature is =w=wed in Chapter 2.

Outside the co—i=xz of communications systems described previously, to our
knowledge there s =o research on scheduling multiple resources simultane-
ously that is relerac: to our concerns. The research carried out in the con-
text of manage=en: 130, and references therein], operations research [98],
manufacturing 2", a=d references therein], multiprocessing computer systems
[55, 56, and rezermces therein], and real-time multiprocessing computer sys-
tems [146, 128. z1c =ferences therein] is interesting but of limited usefulness
to us. The prizary —eason for this is that in these papers the simultaneous
resource requiremenis have been addressed in a very general fashion, leading
immediately t= mro-iems that are known to be NP-complete [56] or which
require general Inear programming solutions of unacceptably high time com-
plexity [130]. It -octrast, we seek to exploit the special structure of simul-
taneous resource “ecirements that arise in data transfer tasks, and hence
derive polynor=ia-time algorithms and simple, fast heuristics that are effec-
tive for our ap oirazion. In later chapters we will demonstrate the results of

this approach.

1.4 Statemrent of the problem

The fundameria problem studied in this dissertation is the scheduling of
data transfers = a-zllel computers and communications systems, with spe-

cial reference :c sz-zllel 1/0, and satellite and computer communications

13

applications. We thus investigate an important special case of the problem
of scheduling tasks which require multiple resources simultaneously. We also
investigate the problem of identifying and exploiting the underlying similarity

of scheduling problems drawn from different application areas.

The simplest case of the data transfer problem we study, which we call Simple

Data Transfer Scheduling or Simple DTS, can be stated informally as follows:

Given a set of data transfers, where

1. each transfer requires a fixed but possibly distinct time,

9. each transfer requires a specified pair of resources, one from each of two
given sets of resources,

3. each resource belonging to one resource set can communicate via a direct
dedicated link with every resource in the other set, and

4. the transfers may occur in any order,

is there a preemptive schedule for performing the transfers whose total length

is at most some given bound?

When the problem is stated as an optimization problem the objective is to

minimize the schedule length. An example is given below.

Example. An instance of the Simple DTS scheduling problem is given for
the parallel 1/O application in Fig. 1.1. Assume that each processor and each

14

Schedule 1
Disks
Processors ' Channels | T2
Transfers of unit length 1 - T
T4) 0 1 2 3 4
P20 O D2 -
ime
PO 13 D3 Schedule 2
P4 O - D4
T2 Channels | 13 T4
System Diagram Ti T2
0 1 2 3 4
Makespan Time

Figure 1.1: Parallel I/O scheduling example

1/0 device can participate in at most one data transfer at any given time,
and each transfer is of unit length. Clearly the minimum length of time for
completing the transfers corresponds to the optimal schedule rather than the

schedule obtained by executing the tasks in the order they are numbered.

In this dissertation we will consider the following specific problems, each of
which has applicability to both parallel I/O scheduling as well as schedul-
ing data transfers in communications systems. The problems are necessarily
described informally at this stage; they will be specified formally in the dis-

sertation.

1. The development of a general abstract model for specifying scheduling

problems.

o

The problem of developing optimal and approximate algorithms for solv-

ing the Simple DTS problem.

1.5

15

The problem of developing optimal and approximate algorithms for the
SimpleDTS problem where the communication architecture restricts

the number of simultaneous transfers possible.

. The problem of developing optimal and approximate algorithms for pre-

emptive data transfer scheduling where the communication architecture

has a tree topology (‘tree architectures’).

. The problem of developing algorithms for preemptive data transfer sch-

eduling in tree architectures where preemptions may occur at non-
integer boundaries, and both ‘local’ and ‘remote’ data transfers may

take place.

. The problem of developing algorithms for scheduling data transfers in

the presence of mutual exclusion constraints and precedence constraints.

. The problem of experimentally evaluating the effectiveness of algorithms

for SimpleDTS and for scheduling in tree architectures.

Research approach

We first approach the problem of defining an abstract model for specify-

ing scheduling problems by using a formal graph-theoretic formulation. We

choose a graph-theoretic approach because graph theory has proven useful as

a unifying modeling and analysis formalism for a diverse range of applications

[34], and because of its wide accessibility.

The scheduling model is not only a research result but an invaluable aid in

our approach to the other problems we study. We formally specify all the

16

problems in the framework of the model, allowing us to easily expose the

underlying similarities of problems in different application domains.

The graph-theoretic nature of the problem specifications in our model im-
mediately points to fundamental computational graph theory techniques for
solutions. In particular, we are able to apply and extend graph matching,
edge coloring, and network flow techniques for developing solutions to our
problems. We can do this with confidence because the formal nature of the
problem specifications eliminates any ambiguities or doibts about the appli-

cability of these techniques.

The scheduling model also allows us to manipulate the problem specifications.
This has tremendous practical benefit in some cases, as we are able to avoid
developing new scheduling algorithms for new problems, by exploiting exist-
ing solutions. We use the model to recognize the equivalence of scheduling
problems drawn from different applications by inspecting their specifications
in the model. We also use the model to systematically transform a prob-
lem specification into the specification of a seemingly different problem. And
finally we show that it is possible to decompose problem specifications into
sub-problems whose solution is known, and solve the original problem by

combining these solutions.

An important aspect of our research approach is to experimentally evaluate
our scheduling algorithms. While doing so it is important to carefully consider
and state the assumptions and the range of parameter values for which the

algorithms are to be evaluated. In order to do so effectively, it is desirable

17

to select specific application scenarios and operating conditions. We have |
focused on the parallel I/O application, and in particular, for the projected

workloads from high-demand applications such as 3D visualization of scientific

data.

1.6 Summary of results obtained

We obtain the following results:

1. An abstract graph-theoretic model for specifying scheduling problems,
and a demonstration of its use for specifying a wide range of traditional
and simultaneous resource scheduling problems [80, 81].

9. A set of three optimal algorithms, A1 - A3, for solving the S impleDTS
problem, and for Simple DTS where the architecture restricts the num-
ber of simultaneous transfers [78]. These algorithms generalize previous
work for these problems and provide algorithms with better time com-
plexity.

3. A detailed experimental evaluation of the performance of A1 - A3 for
the parallel I/O application, with a determination of the situations for
which each is best suited.

4. A theoretical analysis of the worst-case time complexity and schedule
length generated by two heuristics for the situations covered by Al -
A3, when all tasks are of the same length. We prove that the heuristics
produce schedules that are at most twice the length of the optimal

schedule.

-3

1.7

18

An optimal algorithm, Tree, for preemptive data transfer scheduling
where the communication architecture is a tree [77]. This algorithm
solves more general cases of this class of scheduling problems than pre-
viously available algorithms, and provides a better time complexity.

An extension of the Tree algorithm to optimally solve problems where
preemptions may take place at non-integer boundaries, reflecting the

characteristics of multimedia applications involving continuous media

(125, 126).

. An approximate algorithm for preemptive data transfer scheduling in

tree architectures.

An approximate algorithm for scheduling data transfers in tree archi-
tectures when both local and remote data transfers may take place [81].
An optimal algorithm for scheduling data transfers where there are no
architecture constraints but the tasks are instead subject to logical mu-
tual exclusion constraints [81]. The allowable class of mutual exclusion
constraints includes those expressible in the CODE 1.2 parallel pro-

gramming environment [140].

10. The data transfer problem is NP-complete if precedence constraints are

permitted, even if their structure is restricted to be a tree.

Organization of the thesis

Iz Chapter 2 we define our model for specifying scheduling problems. In the

following chapters we consider specific scheduling problems and their solu-

tions. We give a survey of previous related work and suggestions for future

19

work as needed in each chapter. In Chapter 3 we design solutions to the first
problems we consider, Simple DTS as well as SimpleDTS when only a re-
stricted number of transfers may occur in parallel. We present the results of
an extensive experimental evaluation of the optimal solution algorithms. In
Chapter 4 we discuss heuristics that have been proposed and experimentally
evaluated for these problems, but for which no analysis of time complexity or
worst-case schedule length was previously given; we derive both. In Chapter
5 we consider data transfers in hierarchical, tree-structured architectures, and
design an optimal algorithm which generalizes previous work for this problem
and obtains a better time complexity. In the following chapter we discuss an
approximation algorithm for this problem. In Chapter 7 we consider various
extensions and applications of the algorithm for tree architectures, including
arbitrary preemptions and both local and remote data transfers. In Chapter
8 we consider the effects of mutual exclusion and precedence constraints, and
in Chapter 9 we end with some conclusions and some broad suggestions for

future work.

Chapter 2

A Model for the Scheduling Problem

We define our scheduling model in this chapter. The model restricts attention
to providing a framework for formally specifying scheduling problems which
are static and deterministic, i.e., all relevant problem pafameters are fixed

and known a priort.

The term “scheduling” has sometimes been used loosely in the literature, with
different interpretations in different application domains. In the following we
define the terms allocation, assignment and schedule precisely. We later give
examples of practical problems drawn from different application areas where
the object is to calculate an allocation, an assignment or a schedule for a
given set of tasks. Finally we compare the model with previous classification

schemes.

2.1 Basic Definitions

We take certain notions as primitive. We shall assume the existence of primi-

tive objects called resources; intuitively these correspond to machines, parts,

20

21

communicztions links, disks etc. We also assume the existence of primitive
objects caled units of computation; intuitively these correspond to computer
subroutinss, data transfers, industrial processes, etc. Finally, we assume dis-
crete time to be a primitive notion, represented in the model as the set of

natural nembers. The following two definitions relate these primitive notions.

Def. A task is a unit of computation that requires a fixed set of resources.

Notice thes this definition does not assume that the actual resources required
by a task are known, only that they form a fixed set. It is assumed that all
the resources are required for the entire duration of the task. In practice a
complex process requiring different sets of resources at different times may be

represented as a sequence of tasks.

Def. The length of a task is the amount of time the task requires its fixed

set of rescirces.

In practics we may specify the task length in units such as machine instruc-
tions or machine cycles, from which the task length in units of time can be

readily czlculated knowing the speed of the resource.

We assurre that resources are partitioned into a collection of disjoint sets; the

set to which a resource belongs is called its type.

Notation. Let T denote the set of tasks, R the set of resources, and RT the
set of rescurce types. Let 7 denote the set (of natural numbers) representing

time and N the set of natural numbers.

22

Def. The task resource requirement is a function tr : T'— N |r7| specifying

for each task the number and type of resources required by the task.

We assume that the task resource requirement is known for all tasks, i.e., is
an “input” to any problem we shall consider. The solutions of different types

of problems are the allocation, assignment and schedule functions, which we

define as follows.

Def. An allocation, al: {T} - N |RT ‘, specifies the number of resources of

each type to be used by the set of tasks T'.

An allocation differs from a task resource requirement in that it refers to
the number and type of resources used by the set of tasks as a whole. For
instance, 5 independent tasks, each requiring a tape drive, may be allocated

only a single tape drive and hence have to be serviced in sequence.

Def. An assignment is a function as : T — 2F specifying the resources to be

used by each task.

An assignment differs from an allocation in that it specifies, for each task,
the exact resource instance that the task requires. For example, given 5 tasks
Ty, ..., Ts, specifying that task 7} requires tape drive unit (: mod 3) is an

assignment.

Def. A schedule is a function s : T — 2F x 27X N specifying for each task
the resources and the times 7; and durations n; for which they are held, i.e.,

for each task ¢t € T, there exists k € N such that

23

s(t) = R(t) U {(r1,m1),(72,n2), ey (TEs k) }

where, for 1 <1<k, R(t) CR, T; €7, Tita 2 Ti T i and n; € N.

Note that if schedule s is non-preemptive then for all t € T,k =1, i.e., there
is only a single non-interrupted block of contiguous time slots during which

the task executes.

Def. Given a schedule s(t) as defined above we can define the following
auxiliary functions. Functions start and stop give the times at which a given
job starts executing and is completed, respectively. The makespan is the time
from the start of the earliest job to the time that the latest job completes.

Function active gives the time slots during which a given job executes.

start(s,t) =11

stop(s,t) = Tk + Nk

makespan(s) = maz{stop(s,t) : t € T} — min{start(s,t):t € T}
active(s,t) = {(ri,7i +1): 35,1 <J < k7 STiATS +1<7;+n;}

2.2 Allocation and Assignment Problems

We show how allocation and assignment problems are defined in the model.

The definitions introduced here are used to define the scheduling problem.

Assuming a task resource requirement is given, the problem of computing an

allocation meeting specified constraints among the tasks and minimizing some

24

objective function is called the allocation problem. The constraints among

the tasks are specified using an eztended precedence graph, defined below.

Terminology. A hyperedge is an undirected connection between one or more
vertices. A hypsredge on one vertex is called a self-loop. A hyperedge on two
vertices is called an edge. (We represent hyperedges connecting three or more
vertices as a liv= incident on the vertices). An arc is a directed edge. A path
is a sequence ¢ arcs or hyperedges in which consecutive arcs or hyperedges
share a vertex and no vertex is included twice. A (linear) chain is a path
consisting only of arcs. A cycle consists of a path and an arc or hyperedge

connecting the irst and last vertex of the path.

Def. An eztenied precedence graph PG = (T, Ep, Lp) consists of a set T of
vertices representing tasks, a set Ep of arcs and hyperedges, and a labeling

function Lp wkere

length of task z, if z € T
Lp(z) ={ corrmunication cost from task u to v, if z = (u,v) is an arc
0, ¥ r is a hyperedge

Informally, a hrperedge specifies that the tasks connected by the edge are to
be mutually exclusive, i.e., no two may execute or operate simultaneously. An
arc (u,v) specifes that task u must complete before task v may begin. These
notions are made precise when the scheduling problem is defined below. We
will sometimes refer to the extended precedence graph simply as a precedence

graph for breviy.

Def. An allocation problem is a tuple ALP = (PG, f) where f is an objective

function and P75 is a precedence graph.

25

Example 1. Consider a set of 5 tasks, Ti....,Ts, each of which consists of
a unit-weight data transfer between a processor and a disk. If the tasks are
independent, PG consists of 5 vertices and no arcs. If the the objective is
to minimize the number of disks and processors so as to achieve a minimum
makespan, upto 5 processors and disks can be used in parallel. However, if
T; is to precede T, which is to precede T3, PG consists of 3 vertices labeled
Ty, T», Ts with an arc from T to T; and an arc from 75 to 7, and two vertices
labeled T, Ts with no arcs incident upon them. In this case, only 3 processors

and 3 disks need to be allocated to obtain a minimum-length schedule.

A precedence graph with no hyperedges, i.e., consisting only of arcs, is a fa-
miliar structure from previous work in computer science areas such as parallel
architectures, compilers, etc., as well as traditional scheduling theory. The ad-
dition of hyperedges is necessary to express the synchronization requirements
between parallel tasks commonly encountered in parallel programming. In our
model the precedence graph is used also to express what are known in sched-
uling theory as technological constraints [43], such as the sequence in which
jobs visit machines in a job-shop. Finally, the vertices in the precedence
graph can be annotated with additional task information, such as release

times, deadlines, etc., although these will not be considered in this paper.

Assuming a task resource requirement is given, the process of computing an
assignment meeting specified constraints among the resources as well as the
tasks and minimizing some objective function is called the assignment prob-
lem. The constraints among the resources are specified using an architecture

graph, and are called architecture constrainis.

26

Def. An architecture graph AG = (R, Ea,La) consists of a set R of ver-
tices representing resources, a set Ea of arcs and hyperedges, and a labeling

function La:

| processing speed, if z € R
La(z) = { capacity, if z € Fa

An arc or hyperedge in AG represents interconnection of resources. Typically

hyperedges represent buses and arcs represent unidirectional communication

links.

Def. An assignment problem is a tuple ASP = (PG, AG, f) where f is
an objective function, PG is a precedence graph, and AG is an architecture

graph.

Example 2. Consider the set of 5 unit-length tasks Tt,...,T5, with T3 to
precede T, which is to precede T3, as in Example 1. Suppose AG consists of
5 processors and 5 disks interconnected such that there is a direct dedicated
link between every processor-disk pair. The objective function is to obtain
a minimum-length schedule while utilizing a minimum number of resources.
Since at most three of the tasks can be active at any given time, only 3
processors and 3 disks need to be allocated. Further, any two tasks can be

assigned the same processor-disk pair if there is an arc connecting them in

PG.

We now give examples of two applications in computer science and engineering
that demonstrate the ability to specify realistic allocation and assignment

problems using the model.

27

Application 1: Digital Hardware Synthesis. A common problem in the
manufacture of application-specific integrated circuits (ASIC) is to design a
VLSI chip that implements a given computation, e.g. a linear filter for signal
processing. The computation can be broken down into a set of tasks, e.g.
FFT, multiplication, etc.. that are to be performed in some specific partial
order, where each task requires a known set of resources (adders, invertors,
etc.). Depending on the computation, it may be possible to reuse some of the
resources for different tasks, e.g. two tasks that each require an adder may be
able to time-share a single physical adder circuit. Then a typical allocation
problem is to determine the number of resources of each type that are required
in order to perform the computation such that the cost is minimized; the cost
may be simply the total number of resources, or the chip area required to
implement them, etc. [114]. The problem can be specified in the model as
a precedence graph representing the computation and an objective function

which calculates the cost of the number and type of resources used.

Application 2: Parallel Programming. A well-known problem is to min-
imize the execution time of a parallel program on a given parallel computer
architecture, where the program has been decomposed into a set of parallel
tasks. One objective is to allow the parallel tasks to execute on as many sep-
arate prbcessors as possible so as to reduce computation time. This conflicts
with the objective of clustering tasks on a single processor to minimize the
delay incurred when data is communicated among them. (See, for instance,
[89]). In our model the problem is an assignment problem in which the par-
allel program is specified as the set of tasks in a precedence graph and the
given computer architecture as an architecture graph; the objective function

is typically the makespan.

28

Note that in the digital hardware synthesis problem, once an allocation has
been calculated, the assignment problem is often trivial. The precedence
graph and allocation together determine the form of the architecture that
is to be synthesized, and hence the assignment of tasks to resources in that

architecture.

2.3 Definition of the Scheduling Problem

Unlike the allocation and assignment problems, the scheduling problem is di-
rectly concerned with determining the times at which tasks execute. In order
to define the scheduling problem, we first introduce the resource graph. A
resource graph specifies the assignment, if it is known, as well as the direction
of any data transfers that are to take place between resources that are held

simultaneously.

Def. A resource graph for a given set of tasks T, RG = (R, Er, Lr), consists of
the set R of vertices representing resources, a set Er of arcs and hyperedges,
and a labeling function Lr. For all arcs and hyperedges e € Er, Lr(e) =t
specifies that task t € T must simultaneously possess all resources connected
by e. In addition, if e = (r,s) € Er is an arc then ¢ involves transfer of
information from r to s. If Er = {} then the assignment of tasks to resources

is not specified.

In some applications, such as the the hardware synthesis and parallel pro-
gramming examples given above, there may be explicit allocation and assign-

ment phases that occur before the scheduling phase, so that the assignment

29

is known before scheduling is begun. In other applications, however, such
as multiprocessor scheduling (i.e., scheduling identical parallel machines) the
process of computing an assignment is performed at the same time as that of
scheduling. In the latter class of problems only the task resource requirement
is known; typically this occurs because there is only one resource type and

the interconnection of resources is nonexistent or trivial.

Def. A scheduling problem is a tuple SP = (PG, AG, RG, f, Preempt) spec-
ifying constraints on tasks and resources, where f is an objective function,
Preempt is true iff the schedule may be preemptive, and PG, AG and RG

are precedence, architecture and resource graphs respectively.

The resource graph, whether specified as part of the problem or calculated
during the scheduling process, must be “consistent” with the architecture
graph, since both refer to resources and data transfer between them. To

capture this requirement we define a resource function.

Def. A resource function g : RG — AG is a function which

1. if e = (u,v) € Er is an arc in RG then there is a path from g(u) to g(v)
in AG
2. ignores all hyperedges and labels in RG.

In some cases the resource function may be very simple. For instance, if
the architecture graph contains only arcs and is complete, and there are no

hyperedges or parallel arcs in the resource graph, the resource graph will

30

simply be a subgraph of the architecture graph. Also, for brevity we may
not specify a resource graph completely. For instance, if the architecture
provides a unique directed path between every resource pair, the resource
graph may only specify the end vertices involved in a data transfer, leaving
the intermediate vertices along the data path implicit. We will use such

shorthand notation in some of the examples in this paper.

In the following definitions we formalize the notion of a schedule being a
solution to a scheduling problem posed in the model. Most of the definitions
are obvious from the semantics of the various graphs that we have defined.
We include the resource function in the definition of a schedule satisfying a

problem in order to incorporate a notion of consistency.

Def. A schedule s satisfies the precedence graph PG = (T, Ep,Lp) of a
scheduling problem SP = (PG, AG, RG, f, Preempt) iff

1. If (u,v) € Ep is an arc in PG then task u stops before task v begins,
i.e., stop(s,u) < start(s,v)

2. If e € Ep is a hyperedge in PG then no two tasks connected by the
hyperedge are active simultaneously, i.e.,
Y u,v € e, active(s.u) N active(s,v) = {}

3. For all t € T, Lp(t) = |active(s, t)|.

Def. A schedule s satisfies the architecture graph AG = (R, Ea,La) of a
scheduling problem SP = (PG, AG, RG, f, Preempt) iff

31

1. For all ¢ = Ea, for all i, 0 < i < makespan(s), if a() is the number of

tasks cerare during time slot ¢ which use e, then a(z) < La(e).

Def. A schedue s satisfies the resource graph RG = (R, Er, Lr) of a sched-
uling problem P = (PG, AG, RG, Preempt) iff

1. For al etges e € Er, if r(e) is the set of resources connected by e,

r(e) C RLre))

Def. A schedie s satisfies a scheduling problem SP = (PG, AG, RG, f,
Preempt) iff

1. s satisfes P53, AG, and RG
9. If Prezmot = false then for allt € T, for some 7 € T,n € N ,s(t) =
R(t)L_ (=.n)

3. there =xiss a resource function g : RG — AG.

Def. A schecie s an optimal solution to a scheduling problem SP = (PG,
AG, RG, f. Prempt) if it satisfies SP and the objective function f is mini-

mized.

Application i: Job-shop scheduling. We use the n-job, m-machine job-
shop problem <o give an example of how a traditional class of scheduling
problems, oot nvolving simultaneous resource requirements, can be specified

formally in the model. In later sections we will specify problems relating to

simultaneo-s rsomrce scheduling, in particular parallel I/0O scheduling.

32

JobShop = (PG, AG, RG, f, Preempt)

where PG = (T, Ep, Lp) consists of n linear chains of m vertices each, each
chain representing a job and each vertex an operation on a machine. Thus
|T| = n m and for all tasks t € T, Lp(t) € N specifies the length of the task

as a number of primitive operations.

AG = (R, Ea, La) consists of |R| =m vertices and no edges, i.e., Ea = {}.
For all r € R, La(r) € N specifies the processing speed in operations per unit

time.

RG = (R, Er, Lr) consists of |R| = m vertices, each with n self-loops, Le.,
|Er| = n m, and Lr is a bijection between Er and T. (The labels on the
self-loops in Er together with the precedence order between tasks specified
in PG determine the technological constraints, i.e., the order in which jobs

visit machines in the job-shop).

Example 3. As a numerical example, consider a 3-machine, 3-job job-shop,
where each job J; visits each machine M; in some specified order, for 1 =
1,...,3. The operation performed by job J; at machine M; is a task T3;. The
order in which jobs visit machines is shown in a “fow graph” in Fig. 2.1,

followed by the specification in our model.

The model separates the specification of the technological constraints between
tasks (specified in PG) from the interconnection of resources (AG) and from
the specification of the resources that each task needs (RG). Since the ma-

chines are not interconnected, Ea = {}. Since each task requires exactly one

33

3-job, 3-machine job-shop: job flow graph

Formal spec.:

Precedence
Graph, PG

M3 Architecture

bShop = (PG, AG, RG, f, Preempt) M1 M2 . AG
Jo p=(o Y © Graph, A
Til Ti3 T12
O—-30—-30 Resource
Graph, RG
T21 T22 T23
O O— O Ml M2 M3

T11 T12 Ti3
T33 T32 1 T31 T32 T33
O——0 O T21 T22 T23

Figure 2.1: Specification of a job-shop example

resource, Er consists only of self loops. This separation of concerns in the

problem specification is especially useful in order to manage the complexity

of scheduling problems such as parallel I/O scheduling, as we’ll see in later

sections.

2.4 Example: Multiprocessor scheduling

In this section we show how the model is used to specify the multiprocessor

(also called the uniform parallel machine) scheduling problem and classity

results. By doing so we are able to survey a substantial portion of the litera-

ture on scheduling parallel tasks and recognize that it is not directly relevant

to the problem of scheduling 1/O operations. The multiprocessor scheduling

problem has received a tremendous amount of attention (see [112], [93] and

[60] for surveys). The basic problem is to schedule a set of n tasks with fixed

and possibly unequal lengths and having a given precedence order, on a set

of m identical processors, where each task can execute on any of the proces-

34

sors and the objective is to minimize makespan. In our model the problem is

defined as fclows.

MS = (PG.AG, RG, f, Preempt)

where
PG = (T, E», Lp) where |T| = n, Epis a set of arcs representing the prece-
dence order. and Lp(t) is the length for each task t € T Lp(e) =0fore € Ep.

AG = (R, Es, L) where |R| = m, |Ea| =0, and La(r) is the (same) processing
speed for each r € R. Note |RT| = 1.

RG = (R, E~, Lr) where |Er| = {}.

f is makespan.

The probler is referred to as non-preemptive or preemptive multiprocessor
scheduling cepending on the value of Preempt. Calculating the assignment

is a significant part of the process of calculating a schedule.

We summarize previous work on optimal solutions to MS in Table 2.1 for
the case where Preempt = false, and Lp(t) = 1 forallt € T. In the table,
n = |T|, m = |Ep|, “Arb.” means “arbitrary”, and A(n) is the very slowly-

growing inverse of Ackermann’s function.

Ullman [13%] shows that non-preemptive scheduling for tasks where Lp(t)

€ {1,2} is NP-complete for precedence constraints consisting of arbitrary

35

DAGs and m = 2. Although approximation algorithms have been suggested
for this case (see Lawler et al., [92]), the bulk of the research has concentrated
on optimal algorithms for the tractable case where Lp(t) = 1, and is discussed

here.

Hu’s algorithm [72] can be viewed as a list scheduling algorithm in which jobs
are entered in the list in accordance with their level in the precedence tree.
It can also be viewed as a critical path method (CPM) scheduling algorithm,
since the next job chosen is one on the critical path in the precedence tree.

Gabow’s algorithm [48] can also be viewed as a CPM algorithm.

The Coffman-Graham algorithm [28] is one of the best-known algorithms
in this area, and runs in time O(n?) provided the input to the algorithm
consists of a precedence graph whose transitive closure has been computed.
The improvements by Gabow [49] and Gabow and Tarjan [52] remove this

requirement, thus reducing the time complexity.

Goyal [64] considers the case where there are multiple resource types, but
each task requires exactly one instance of exactly one type. In addition,
there exists only one instance for each resource type. This can be mapped
to the M S problem where Lp(t) = 1, and an assignment is supplied. Goyal
shows the problem is NP-complete when PG is an arbitrary DAG or forest,
and gives a linear-time scheduling algorithm for the case when PG is a “cyclic

forest”.

Palem [112] first shows that M .S is a special case of another well-known pro-

blem, the precedence constrained minimum tardiness scheduling (PCMTS)

36

Reference |[R| | PG | Time Complexity

Hu, 1961 [72] Arb. | forest | O(n)

Ullman, 1975 [134] Arb. | DAG | NP-Complete

Fujii et al, 196¢ 47] | 2 DAG | O(min(mn, n*') + n>?®)

Coffman and
Graham, 1¢72 [28] DAG | O(min(mn,n*') + m + nA(n))

Gabow, 1982 [43] 2 DAG | O(m + nA(n))

Gabow and
Tarjan, 1983 [52] | 2 DAG | O(m +n)

Do

Table 2.1: Previous work for non-preemptive multiprocessor scheduling.

problem. He ther shows how several polynomially solvable cases of both M S
and PCMTS caz be cast as a problem of finding an optimum sequence of
edges in a hyperzraph. The cases that can be shown equivalent using this
framework includs those described in this section, subcases of PCMTS, and
cases of schedulizz on pipelined processors. An algorithm to find the opti-

mum sequence of hyperedges with the desired property can be performed in

time O(|T|*log |T)).

Finally, Lenstra :ad Rinnooy Kan [95] show that the ¢-approximation algo-
Fithm with the lcwest worst-case polynomial time complexity has ¢ = 4/3,
and Lam and Seihi [91] show that using the Coffman-Graham algorithm to

generate lists gives approximation algorithms with ¢ =2 —2/m for m > 1.

Previous work on M S where Preempt = true is presented in Table 2.2. In the
Table, “Arb.” stands for “arbitrary” and “Mut. Com.” stands for mutually
commensurable task lengths. Two lengths are mutually commensurable if
there exists a real number such that each length is some integer multiple of the

real number. Lar and Sethi [91] develop a polynomial-time g-approximation

37

Refemnce 1 |Rl | Le(t) PG | Time Complexity
Ullmman, 1976 [135] Arb. | 1 DAG | NP-complete
Munz and

Coffman, 1969 [108] | 2 Mut. Com. | DAG | O(n?)
Muznz and
Coffman, 1970 [109] | Arb. | Mut. Com. | tree | O(n?)
Gonzmlez and

J:hnson, 1980 [61] | Arb. | Arb. tree | O(nlogm)

Tatle 2.2: Previous work for preemptive multiprocessor scheduling.

algoriiim based on Muntz and Coffman’s method, and show that ¢ = 2—-2/m

for m > 1.

We observe that the multiprocessor scheduling problem essentially consists
of scheiuling a single resource per task under given precedence constraints,
unlike she I/O scheduling problem, which requires two or more resources
to be smultaneously accessed by each task. Typically these resources may
be processors, disks, etc. In the following chapter we define parallel 1/O

schedting precisely.

2.5 Comparison With Other Models

Theze ~ave been several types of models proposed in the literature for the
schedting problem. In [3, 83] the Gantt chart is mentioned as a uniform
model ‘or representing a schedule once it has been computed, i.e., for the
soluticn of a scheduling problem. In this section we discuss models for the

specifization of scheduling problems.

38

In [30] the well-known four-parameter notation A/B/C/D is used to classify
scheduling problems drawn mainly from the area of simple job-shop process
scheduling. In [93] a classification is introduced consisting of a 7-tuple written
as three fields a | B | 7. It is assumed that there are n jobs to be processed
on m machines, with at most one job per machine and at most one machine
per job at any given time. The field a describes the machine environment (a
single machire, identical parallel machines, flow-shop, etc.), B describes the
job characteristics (preemption, precedence constraints, release times, upper
bounds on number of operations per job, and processing times), and specifies
the objective function. Elementary reductions among scheduling problems are

described using this classification scheme.

In comparison with our model, the classification schemes of [30] and [93] have
the advantage of compactness, but they are highly restricted in assuming
that jobs require only a single instance of a single resource type at any given
time. Hence they do not consider the interconnection of resources, as de-
scribed by the architecture graph in our model. Thus the large section of
the literature they address is not directly relevant to the parallel I/O sched-
uling problem. In addition the popular A/B/C/D scheme is open-ended in
nature, with the parameter C becoming longer as more complex problems
need to be specified, so that it is not obvious if some problem constraint
has been omitted inadvertently from the specification. The formal nature of
our model facilitates complete and precise specifications of problem classes as
well as individual problem instances. The model also divides the specification
into modular sub-specifications (PG, AG, etc.), keeping the concerns of each
sub-specification separate. It thus becomes possible to reason systematically

about the relationships between problems, and to use well-defined and formal

39

manipulations on problem specifications.

We choose to use graph theory as the underlying formalism for several reasons.
Firstly, graph theory has proven itself invaluable as a modeling and analysis
formalism in a wide range of applications in areas as diverse as engineer-
ing, physical sciences, life sciences and sociology [34]. Secondly, fundamental
graph theoretic problems. such as graph coloring and matching, have been
found to underlie seemingly different problems in these areas, leading us to
surmise that they may be useful for unifying scheduling problems drawn from
different applications also. In later sections we see that this is indeed the case.
Thirdly, the language of graph theory is intuitively appealing and accessible.
Finally, graphs in some form are familiar to both theoreticians as well as
practitioners in many different fields, particularly engineering and computer

science, and are increasirgly being taught and applied in these fields.

The graph-theoretic nature of our model lends itself to our suggestions for
further work in this area. It would be useful to investigate whether the model
can be further formalized to obtain ‘meta-theorems’ about the logical manip-
ulation of problem specifications, including transformation, reducibility and
equivalence of problem specifications. An example of the usefulness of such

formalization can be found in the context of constraint satisfaction problems

[123].

Chapter 3

Optimal Scheduling in Bus Architectures and TDM
Switches

The specific scheduling problem to which the algorithms in this chapter apply

is the following. Given a set of data transfers, where

1. each transfer requires a fixed but possibly distinct time,

2. each transfer requires a specified pair of resources, one from each of two
given sets of resources,

3. each resource belonging to one rersource set can communicate via a
direct dedicated link with every resource in the other set, and

4. the transfers may occur in any order,

is there a preemptive schedule for performing the transfers whose total length

is at most some given bound?

When the problem is stated as an optimization problem the objective is to
minimize the schedule length. We call this problem the Simple Data Transfer

Scheduling (SimpleDTS) problem. An example of this problem was given in

40

41

Chapter 1. For the parallel I/O application, it is applicable to systems such
as the Sequent [100] where I/O devices are connected to processors via a sin-
gle shared bus; when discussing scheduling for this application, we sometimes
refer to this problem as Simple I/O Scheduling (SimpleIOS). For the com-
munications application, it is applicable to time-slot assignment in TDMA
switches which connect a number of input ports to output ports, particularly
in the case of satellite switching, where it is of considerable practical interest
[75, 74, 9, 10]. (The problem also continues to attract attention in other vari-
ations, for example, the multicast version studied by Chen et al. [22], and

references therein).

The formal specification of Simple DTS consists of a precedence graph with
no edges, a complete bipartite! architecture graph, and a bipartite resource

graph representing the transfers [76).

In this chapter we also consider an extension to SimpleDTS that is useful
for modeling some practical parallel data transfer architectures. We call this
problem DTS, and it is identical to SimpleDTS except that the system archi-
tecture imposes an additional constraint: at most a fixed number, k, of data

transfers may take place at any given time.

For the parallel I/O application, DTS arises in multiple-bus systems such
as the IBM RP3, where k parallel buses connect processor and I/0 devices

1A bipartite graph is one where the set of vertices can be partitioned into two subsets,
i.e., divided into two disjoint exhaustive subsets, such that no edge connects vertices in the
same subset. A complete bipartite graph is one where there exists an edge between every
two vertices that belong to different subsets.

42

[115]. In general, such multiple parallel bus architectures are attractive for
future high-performance parallel computers as they not only allow more than
one data transfer to be in progress at any given time, but also allow more
processors and devices to be interconnected and improve the system’s fault
tolerance [107]. For the communications application, DTS arises very com-
monly for all switches where the switching capacity is less than the number of
ports, and is useful when the average traffic is much less than the maximum

possible traffic.

The applicability of DTS to the problem of obtaining optimal time-slot as-
signment in a TDMA satellite switch allows us to utilize the algorithm KT
for the satellite switching problem, due to Bongiovanni et al {10}, as a starting
point for developirg an optimal algorithm for DT'S. By a series of improve-
ments we obtain a faster algorithm for solving DTS, improving the time
complexity from O(n®) for Bongiovanni et al’s KT algorithm, n is the num-
ber of resources. Our algorithms are based on optimal k-colorings of bipartite

graphs.

This research is both theoretical and experimental. Earlier work by Somalwar
[132] on parallel I'O scheduling developed and evaluated heuristics for sch-
eduling of simultaneous requests for multiple resources, such as I/O requests,
while Kandappan [85] and Balan [4] studied the impact of data allocation
to disks. This chapter formulates the specific parallel data transfer schedul-
ing (or simultaneous multiple resource scheduling) problem discussed above
and presents a set of efficient algorithms for this problem, which are then

evaluated experimentally for a large range of operating parameters.

43

3.1 Overview

In section 3.2 we introduce basic definitions and results from graph theory
used throughout the chapter. In section 3.3 we present Bongiovanni et al’s al-
gorithm in a graph-theoretic form so that it can be applied readily to the DT'S
problem. We then show how this algorithm can be improved, in three ways.
The first improvement arises from the observation that it is not necessary to
obtain a min-max bipartite graph matching, as was done in [10], but that a
maximum cardinality matching suffices. The first improvement is discussed
in section 3.4. The second improvement arises from the observation that a
divide-and-conquer strategy can be used to reduce the worst-case time com-
plexity, and is presented in section 3.5. The third improvement arises from
observing that the graph of interest can be embedded inside a larger graph,
allowing the weighted bipartite matching algorithm of Gabow and Kariv [51]
to be applied, hence reducing the time complexity further. This improvement
is discussed in section 3.6. In section 3.7 we discuss an experimental study
of the efficiency of the scheduling algorithms described in this chapter. The
experimental results give rise to some theoretical issues, which are discussed
in section 3.8. Finally, in section 3.9 we discuss previous work, and we end

with a discussion and suggestions for future work.

3.2 Definitions and problem formulation

The KT algorithm [10] was stated in the context of a specific application and
developed using a matrix formulation. In this section we introduce the defini-

tions and ideas to be used in section 3.3 to give a graph-theoretic presentation

44

of the KT algorithm, thus allowing it to be applied directly to DT'S. The
key observation is that computing a schedule corresponds to edge-coloring a
bipartite graph where the two vertex partitions represent two disjoint sets of
resources (say, processors and I/O devices), and edges represent data transfers

between them. We first introduce some definitions and notation.

Def. An edge coloring of a graph G = (V, E) is a function ¢ E — N which
associates a color with each edge such that no two edges of the same color

have a common vertex.

Consider two disjoint sets of vertices representing two sets of resources, each
of which can participate in at most one data transfer at any given time.
Then an edge coloring for a graph G, where each edge of G represents a
data transfer requiring one time unit, corresponds to a schedule for the data
transfers, and vice versa. To see this, note that all edges of G colored with
the same color are independent in that they have no common vertex. Hence
the data transfers they represent can be performed simultaneously. An edge
coloring of G represents a schedule, where all edges ¢ with c¢(e) = 1, for some
i, represent data transfers that take place at time i, and vice versa. The

number of colors required to edge-color G equals the length of the schedule,

and vice versa.

As an aside, we note that edge coloring should not be confused with the clas-
sical graph theory problem of vertex coloring, in which vertices are assigned
colors such that no two vertices of the same color share an edge. In graph

theory terminology, the minimum number of colors required to vertex-color a

45

graph is called its chromatic number, while we will be interested in the min-
imum number of colors required to edge-color it, called its chromatic index.
In the rest of this thesis, unless explicitly stated, “coloring” a graph refers to

edge coloring. For more information on edge coloring, see [41, 5].

Def. A multigraph is a graph in which an edge can occur more than once.
A weighted graph is a graph in which the edges have been assigned weights

drawn from the set of natural numbers.

Notation. Let G = (A, B, E) denote a bipartite graph where A and B are
two disjoint sets of vertices and E C Ax B is the set of edges. Let |Al+|Bl =n
and |E| = m. Each edge e € E has a weight wi(e) associated with it, and
the weight of a vertex is the sum of the weights of the edges incident upon
it. Thus wt: EU AU B — N. We can also represent the weighted bipartite
graph G as a multigraph G’ = (4, B, E') where each edge e € E is replaced
by wit(e) parallel edges of unit weight in E’. Then G is referred to as the
underlying graph of G', and G’ as the multigraph corresponding to G.

Consider an instance of DTS where the architecture allows at most k simulta-
neous transfers, and data transfers may require an arbitrary positive integer
number of time units. Then the problem can be represented as a weighted
bipartite graph G, where edge weights represent transfer lengths. Since pre-
emption is allowed, a schedule can be obtained as an edge-coloring of the
multigraph corresponding to G, with the restriction that no color may be

used more than k times.

We now state the definitions and lemmas used to derive results on edge-

46

colozint. The following two lemmas are well-known results from graph theory.

The res are graph-theoretic versions of those in Bongiovanni et al [10].

Def. T=e degree of a vertex is the number of edges incident upon it. The
degree if a graph is the maximum of the degrees of its vertices. A critical

vertsr 5 one of maximum degree.

Def. Tie weight of a graph is the sum of the weights of its edges. The weight

of a ve—ex is the sum of the weights of the edges incident upon 1t.

Notice =zt for a graph with unit-weight edges the degree of a vertex equals

its weirmz.

Def. - matching M C E is a set of edges such that no two edges have a
cormmam vertex. A mazimal matching is one such that no other matching has

a laree czrdinality. An edge in a matching is said to cover the vertices that

=

are 11z =mZpoints.

Def. ¢ c-itical matching is one which covers all critical vertices.

Lemma 3.1 Every bipartite graph has a critical matching.

procf. ‘es Berge [5]. o

Alt=ous= the following Lemma is well known, we sketch the proof here as it

prod= some intuition for results later in the paper.

47

Lemma 3.2 FEzactly d colors are necessary and sufficient to color a bipartite

graph of degree d.

aroof [5]. Clearly, at least d colors are necessary, since a critical vertex requires
-hat each incident edge have a different color. The proof of sufficiency is by
‘nduction, sketched as follows. Find a critical matching M, which, from
Lemma 3.1, must exist. Color the edges in M a single color and delete them
“rom the graph. The remaining graph has degree d — 1, and by the induction
Sypothesis can be colored using d — 1 colors. Hence the graph can be colored

#ith d colors. 0

Def. A k-coloring of a graph is an edge-coloring in which each color may be

1sed to color at most k edges.

Lemma 3.3 At least ¢ = max(d, [m/k]) colors are necessary to k-color a

bipartite graph with m edges, degree d, and unit-weight edges.

proof. If d < [m/k], at least [m/k] colors are required to color the graph.

Otherwise the argument of Lemma 3.2 applies. 0O

Notation. Let w denote the maximum weight of any vertex in the bipartite

zraph G, and W denote the weight of G.

Def. The bound of the bipartite graph G for an instance of DT'S is defined
as ¢ = max(w, [W/k]).

48

Any scheduling algorithm which produces a schedule of length equal to the
bound for every instance of DTS, is optimal. Notice that a scheduling al-
gorithm has two measures of performance: optimality, i.e., how close the
length of the schedule it produces is to the minimum length, and how long

the algorithm takes to run.

Def. For a bipartite graph G representing the transfers in DT'S, a critical
weight vertez is one of weight equal to the bound ¢. A critical weight matching
is one which includes all critical weight vertices. A critical k-matching is a

critical weight matching with k edges.

3.3 An algorithm based on max-min matching (KT)

In this section we present the outline of the algorithm KT [10], and in the
following section, our first direct improvement to its time complexity. The
KT algorithm is presented in suficient detail so as to justify the improvement
and to provide a basis for the divide-and-conquer algorithm to be presented

in section 3.5.

We develop the KT algorithm in a graph-theoretic framework, unlike the
matrix formulation in [10]. The key observation in Bongiovanni et al [10] is
that a bipartite graph can always be augmented to have a certain character-
istic, called k-completeness, such that a critical k-matching exists. Further,
deleting a critical k-matching from the graph leaves it k-complete. Thus a

sequence of critical k-matchings can be found, and hence a schedule. The

49

folowing two lemmas are used in the proof of Theorem 3.1, which implies

that a critical k-matching exists in G.

Def. A graph of weight W and maximum vertex weight w is k-complete with

respect to a constant r if w < rand W = kr.

Lemma 3.4 Any bipartite graph G with bound q can be augmented by adding
aporopriate weighted edges so as to obtain a bipartite graph H that is k-

complete with respect to g, for any k < n, and further, this can be done in

time O(n).

proof. The proof is constructive, using the algorithm given below.

Algorithm k-complete(G, W, k, q)
Input: a bipartite graph G, eventually to be k-colored, with weight W and
bcund g.

Output: G with additional edges to make it k-complete with respect to g.

1.1, := 0, 0;
2. while W < kq
/* wt(v) is weight of vertex v */
if wt(a(i)) < qand wt(b(j)) <q
add edge (a(i), b(j)) of weight w’ = w - max(wt(a(i)), wt(b(j)))
wi(a(i)), wi(b()), W += w

if wt(a(i)) = q

A o

50

7. =141
5. E£wi(b(i) =q
9. j=i+1
10. enc

It is o=te easy to show thai the algorithm is correct [10]. To evaluate its
time ccmplexity, observe tha: at each iteration, either i or j is incremented,
or bot>. and that the proced=re will terminate by the time that either i or j
equals ». Thus there are at most 2n — 1 = O(n) iterations. If the graph is
represezted as an adjacency Zst. adding an edge takes time O(1), leading to

an oveszll time complexity of O(n). O

The a‘ded weighted edges &re called dummy traffic and are deleted at the

end of <he scheduling algorit=m.

Def. ~ bipartite graph is reczlar if all its vertices have the same degree; it is

requla~ weight if all vertices zave the same weight.

Lemma 3.5 For any regula weight bipartite graph G = (A, B, E) with |A| =

|B|. there ezists a matching of size |A|, which is therefore mazimal.

proof. See Berge [3]. O

Def. A bipartite graph of weight W and maximum vertex weight w is k-
filled vith respect to a constent rif it is k-complete with respect to r, and all

e . .
verticss have weight r.

51

A bipartite graph H = (A, B, E) with |A] = |B| that is k-complete with
respect to r can be transformed to one that is k-filled with respect to r by
a construction sketched as follows. Let |A| = |B| = n. Augment H so that
H' = (AU C,BUD,E U F) with vertex sets |C| = |D| = n—k and edge set
F = AD U BC where AD CAx D and BC C BxC. The edges in F' are
added and their weights assigned such that all vertices in H " have weight r
and yet H' is also k-complete with respect to r. We call this algorithm k-fill.
See Bongiovanni et al [10] for a detailed description of this algorithm and its

proof of correctness. We observe that k-fill takes time O(n).

Theorem 3.1 [10]. For any bipartite graph H = (A, B, E) with |A] = |B|
and bound q that is k-complete with respect to g, there ezists a critical k-

matching.

proof. The proof is by construction, as outlined in the algorithm below.

Algorithm CKM(H, k, q)
Input: a bipartite graph H, which is k-complete with respect to its bound ¢
Output: A critical k-matching on H.

H = k-fill(H);
Find a matching M on H’
return(M N E)

> W o

end

Use k-fill to generate H' = (AU C,BU D,E U F) from H. From Lemma

3.5, there exists a matching M of size 2n — k for H'. Since H' contains no

52

edges in C x D.n — k edges of M are required to cover the vertices in C,
and similarly for D. This leaves 2n — k —2(n — k) = k edges of M having
vertices only in H. Further, these k edges cover every critical weight vertex
in H, since such vertices do not need to be augmented by adding edges in F.

Thus M N E gives the required critical k-matching on H. 0

We now cite the theorem that, together with Theorem 3.1, ensures that it is

always possible 10 k-color G.

Def. The duration of a matching M of a graph with bound gisr = min(r’, ¢g—
"), where r’ is tae minimum of the edge weights of M and r” is the maximum

vertex weight armong vertices not covered by M.

Theorem 3.2 Let H = (A, B, E) be a k-complete bipartite graph with |A| =
|B| which is k-complete with respect to its bound q. Let M be a critical k-
matching on H. Let M' be M with the weight of all edges set to the duration
r of M. Then the graph HM = (A, B, E — M"Y is k-complete with respect to

g =q-—r.

proof. See Bongiovanni et al [10]. a

Informally, the duration of a matching is the number of time slots a critical
k-matching can be used repeatedly. At each time slot that it is used, the
weight of all the edges in the graph that are also in the matching decreases

by one, since the remaining length of the transfer represented by that edge

53

decreases by one. A new critical k-matching must be calculated if either the
weight of one of the edges of the matching decreases to zero, or a vertex that

was previously not critical weight becomes critical.

Theorems 3.1 and 3.2 together lead to an optimal algorithm called KT [10.
In KT, dummy traffic is added to augment the bipartite graph and make
it k-complete with respect to its bound. The well-known max-min bipartite
weighted matching a,lgorithm (see [92]), which we call MaxMinMatch, is
then invoked to find a critical k-matching. The result of Theorem 3.2 is
used to calculate its duration. A sequence of critical k-matchings is found
by calling the max-min bipartite algorithm repeatedly. Finally, the dummy

traffic is removed from the k-matchings to obtain an optimal schedule.

It should be pointed out that the objective of Bongiovanni et al [10] was to
obtain a minimum-length schedule while not paying too high a price in terms
of L, the number of times that critical Ek-matchings have to be calculated. The
concern in this paper is to obtain a minimum-length schedule while reducing
the total running time of the algorithm. In the following we evaluate the

running time of KT and suggest an improvement.

Theorem 3.3 The running time of algorithm KT to find a minimum-length
schedule for an instance of DTS is O(n®).

proof. Augmenting a bipartite graph to make it k-complete is O(n) (Lemma

3.4), as is deleting the dummy traffic. Bongiovanni et al [10] show that

54

L = O(n?), but the running time of K'T is not calculated. However, we thus
know that the number of times that the max-min bipartite matching algor-
ithm MaxMinMatch [92] is called is O(n?). Since the max-min matching

algorithm has a running time of O(n?), the result follows. O

3.4 An improved scheduling algorithm (A1)

In this section we show how KT can be improved. We recall that in order
to minimize the running time, an algorithm that simply finds a maximum-
cardinality matching in H’, the regular weight bipartite graph with 2n — k
vertices in each partition, suffices. Such an algorithm will find the required
critical k-matching in H. We can thus use the maximum cardinality matching
algorithm of [71], which we call MaxMatch. We call the resulting optimal
scheduling algorithm A1.

Theorem 3.4 The running time of algorithm A1 to find a minimum-length
schedule for an instance of DTS is O(n*®).

proof. The maximum cardinality matching algorithm MaxMatch of [71]
takes time O(|V|°|E|) = O(|V[*®) for a bipartite graph with |V| vertices and
|E| edges. For A1, |V|=2n — k. Using the maximum cardinality matching
algorithm does not affect the worst-case value of L, or the time complexity
of adding and deleting dummy traffic. We can use the reasoning of Theorem

3.3 to obtain the result. 0

55

3.5 A divide-and-conquer scheduling algorithm (A2)

In this section we obtain an optimal algorithm for DTS which we call A2.
The key observztion is that the bipartite graph G can be partitioned into two
graphs of rougt’v equal weight which represent two independent sub-problems
of roughly ha¥ the complexity of the original problem. Then algorithm Al

can be applied -ecursively to the subproblems to obtain an optimal schedule.

Def. A walk is 3 sequence of distinct adjacent edges. The first and last vertex
of the sequence are called the ends of the walk. An open walk is one in which

the ends are dstinct; otherwise the walk is closed.

A walk differs “rom a path in that any vertex may be included more than
once (not just she first vertex). This definition is used in the following two

definitions, whch are based on Cole and Hopcroft [29].

Def. An Eule- partition of a graph is a partition of the edges into open and
closed walks. s3 that each vertex of odd degree is at the end of exactly one

open walk, anc each vertex of even degree is at the end of no open walk.

Def. An Eule split of a bipartite graph G = (4, B, E) is a pair of bipartite
graphs H = (4. B, F) and H' = (A, B, F') where E = F U F' and a vertex
of degree d in 7 has degree [d/2] in one of H, H' and |d/2] in the other.

Every graph as an Euler partition, but only bipartite graphs need have

Euler splits [5. 2¢°. An Euler split can be formed from an Euler partition of

56

G by placing alternate edges of walks into F° and F’; both can be found in
time O(n + m) for bipartite graphs and multigraphs [48]. An Euler split of
the multigraph G' corresponding to G, using the algorithm of Gabow [48],
suffices to divide G into two subgraphs each having roughly half the weight
of the original. However, this approach would take time proportional to the
maximum edge weight in G. In the following we develop an algorithm which

is faster because it avoids converting G into a multigraph.

Def. An Euler division of a weighted bipartite graph G = (A, B, E) which
is k-complete with respect to its bound ¢ is a pair of bipartite graphs H =
(A,B,F) and H' = (A, B, F') with E = F U F’ where the bounds of H and
H' are r = [¢/2] and r' = |g/2] respectively, and H, H' are k-complete with

respect to their bounds.

In the following we will show that if ¢ is even, an Euler division always exists.
(This result is required for the divide-and-conquer algorithm A2 we develop
later in this section). The proof is constructive, and is based on the Euler
partition algorithm of Gabow [48] and the perfect Euler split algorithm of
Somalwar [132], both of which are designed for bipartite graphs with unit-
weight edges. We use the notation wi(Y,y) to refer to the weight of a vertex

or an edge y in a weighted bipartite graph Y.

57

Algorithm ED

/* Euler Division of bipartite graphs with even bourds */

Input: Bipartite graph G = (4, B, E) that is k-complete with respect to its
bound ¢, which is even.

Output: An Euler division of G into bipartite grapis H = (A, B, F), H' =
(A, B, F").

ot

B P =L {B

2. for each e € E such that wt(G, e) >1 do

3. wt(H, e), wt(H,), wt(G, e) := | wt(G, e) /2], Lwt(G,e) /2],
wt(G,e) - 2* [wt(G,e) [2 [;

F,F':=F U{e}, P’ U{e};
end for
G = G; /* G’ introduced for convenlence only */
P := EP(G’); /* EP generates an Euler partition [48]*/

balance := true;

© o N> T

for each walk p € P do
10. for each edge e € p do

11. if balance = true then

12. wt(H, e), F = wt(H,e) + 1, F U {e};
13. else

14. wt(H?, e), I’ := wt(H’,) + 1, F’ U {e};
15. end if

16. balance := —balance;

17. end for

18. end for

Lemma 3.6 Algorithm ED generates an Euler division of G.

proof. The first for loop divides all even weight edges from G and converts
all odd weight edges to unit weight. Thus G’ is a unit-weight bipartite graph,
and at line 6 H and H' have equal weights and equal degrees at every vertex.
Algorithm EP generates an Euler partition for a unit-weight bipartite graph
[48]. 1t is clear that lines 9 - 18 ensure that edges from walks in the Euler
partition are assigned to H and H' in such a manner that the weights of H

and H' differ by at most 1 at the end of the algorithm.

We now show that H, H' are an Euler division of G. Clearly E = F U F' by
construction. Let X and X' be, respectively, the weights of H and H', z, &'
the weights of their critical vertices, and r, r’ their bounds. Since ¢ is even,
and W = kg, W is even. Also, W = X + X' and | X —X'| <1 by construction.
Hence X = X' = kq/2. Consequently, if we show that r = r' = ¢/2, then
H,H' will be k-complete with respect to their bounds and thus be an Euler

division of G.

By definition of bound, showing r = r' = q/2 requires that we show that
z, o < q/2. Let z = wt(G,c) be the weight of an arbitrary vertex ¢ in
G at the start of the algorithm. Note that at line 1, if z is even, there
are an even number of odd-weight edges incident upon ¢ in G, and an odd
number otherwise. Consequently, after line 6, wt(G',c) = d is even if z is
even, and odd otherwise. In either case, after line 6, wt(H, ¢) = wt(H',c) =
(z — d)/2 is even. Next, recall that by definition an Euler partition results

in an odd-degree vertex being at the end of exactly one open walk; hence

59

observe that EP followed by lines 8 - 18 results in a vertex of weight d
in G contibuting weight at most [d/2] in H, H'. Therefore, lines 7 - 18
result in wt(H,c),wt(H',c) <(z—d)/2 + [d/2] = [z/2]. Since G is k-
complete with respect to ¢, z < ¢, and since g is even, [z/2] < ¢/2. Hence
wt(H,c),wt(H',c) < q/2.]

Lemma 3.7 ED takes time O(n +m).

proof. The first for loop takes time O(m). From Gabow [48], EP takes time
O(n + m). The for loop from lines 9 - 18 also takes time O(m). 0

We can now state the algorithm A2 which is based on a divide-and-conquer
strategy. If ¢ is odd, a critical k-matching of unit duration is found and
deleted from the graph to make ¢ even. If ¢ is even, an Euler division is
performed and the algorithm applied to the resulting smaller graphs. In the
following, angle brackets delimit a sequence and parallel bars denote sequence

concatenation.

Algorithm A2.

Input: Bipartite graph G = (A, B, E) with weight function wt : E U AUB — N,
and integer k.

Output: A minimum-length k-coloring of G, as a sequence s of (M, b) pairs,

where M is a critical k-coloring and b is its duration.

0.s:={()

1. w := max(wt(v): v €A UB;

60

W := sum(wt(e): e € E);

. q = max(w, [W/k1);

4. Add dummy traffic to make G k-complete with respect to g.
5. A2-color(G); /* Updates s */

6. Delete dummy traffic from s.

7. end A2,

Procedure A2-color(G)

1. if q is odd then

2 M := CKM(G); /* CKM will find a critical k-matching */
3. s Eq=s||{(M1)),E-Maq-1
4. end if

5. H, H = ED(G);
6. A2-color(H);

7. A2-color(H’);
8. end A2-color

Theorem 3.5 Algorithm A2 finds a minimum-length schedule for an in-
stance of DT'S.

proof. We need to show that A2 generates a minimum-length k-coloring of
G. Lines 1 - 4 and 6 - 7 of A2 are similar to K'T. Procedure A2-color is
called with G, a bipartite graph k-complete with respect to its bound g, as its
argument. Thus, from Theorem 3.1, G contains a critical k-matching, which

can be found by the procedure CKM outlined in the proof of Theorem 3.1.

61

If ¢ is odd, a critical k-matching is found in line 2 of A2-color. Now the
graph G with edge set E — M has an even bound ¢ — 1, and from a corollary
of Theorem 3.2, is also k-complete with respect to its bound. Thus from
Lemma 3.6, ED generates an Euler division of G into H, H', which are k-
complete graphs with respect to their bounds |g/2]. A2-color is applied to
them recursively, and by the induction hypothesis generates two k-colorings of
length |g/2]. Together with the k-matching generated if ¢ is odd, we obtain

a k-coloring in s of length q. m]

Theorem 3.6 Algorithm A2 runs in time Oi{Kmn3logn), where K is the

mazimum edge weight of G.

proof. Procedure CKM takes time O(n®m) using the MaxMatch algorithm
of Hopcroft and Karp [71]. By Lemma 3.7, each invocation of ED takes time
O(n+m). Aslongas K > 1, ED results in two subgraphs with bound |¢/2],
each having upto n vertices and m edges. When K =1, ED results in two
subgraphs with bound |q /2], each having roughly m/2 edges. Therefore, for
K > 1, the time T{g,m) for an invocation of A2-color with a graph of bound
g and m edges is T(g,m) = O(n3m) +2T(lg/2],m) = KT(q/K,m)+ (K —
1)0(n’m) < KT(m,m) + KO{n®m). Now T'(m,m) = 2T(m/[2,m/[2) +
O(n®m), i.e., for some c, m e N, T(m,m)<2T(m/2,m/2) + en®m for all
m > m'. Hence T(m,m) <4T(m/4,m/[4) + 2en®m/2 + en®m < mT(1,1)
+ (logm)en®m, for all m > m', ie., T(m,m) = O(n’mlog n). Therefore,

the total time T'(g,m) = O(Kmn®logn). i

Thus A2 is superior to KT for problem classes where K is small relative to

62

n*%/(mlogn), i.e., say smaller than n?. A2 is superior to Al when K is

small relative to n*/(mlogn), say smaller than n'®.

3.6 An algorithm for large transfer lengths (A3)

While A2 is satisfactory for problems where K increases at a modest rate
relative to n, it does not handle problems with large transfer lengths well.
In fact, A2 is not a polynomial-time algorithm, but a pseudo-polynomial
time algorithm [56]. This is because the weight of each edge in the input
graph must be supplied to the algorithm.? In this section we describe how
an algorithm for edge coloring of weighted bipartite graphs with k = n [51],
can be applied for DTS when k < n. The key observation is that deleting
a maximal matching from a k-filled graph (see section 3.3) leaves a k-filled
graph.

Consider a weighted bipartite graph G = (A, B, E) with weight W, maximum
vertex weight w, maximum edge weight K, and bound ¢. By Lemma 3.4, it
can be converted to a k-complete graph with respect to ¢ by adding dummy
traffic, and then to a k-filled graph G’ with respect to ¢ using the k-fill
algorithm This conversion 1s performed in KT and A1, and takes time O(m+

21t takes O(log K) bits to encode the weight of each edge, so that O(mlog K) bits are
needed to supply the information about the edge weights in the input graph. On the other
hand, it takes O(logn) bits to encode each vertex label, and hence O((m + n)logn) bits
to encode the graph connectivity. Thus the total length of the string describing the input
is I = O(n*(logn + log K)). The time complexity of A2 increases as a polynomial in [if
ounly n increases, but as an exponential in I if K increases.

63

Let G' = (A',B',E") with |4| = |B| = 2n — k, weight W’ = (2n — k)gq,
maximum edge weight K’, and all vertex weights equal to ¢. In both KT and
A1, a maximal matching M’ of size 2n —k on G’ is obtained, and the k edges
of M = M' N E are deleted from G. This results in a new graph H which is
k-complete with respect to ¢ — 1 but not k-filled with respect to g — 1. It 1s
necessary to invoke k-fill on H before obtaining the next critical k-matching.
We observe that if all 2n — k edges of M’ are deleted from G’, the result is a
graph G” that is k-filled with respect to ¢ —1, obviating the need for k-filling

again before obtaining the next matching.

The argument above leads to the following algorithm, where an edge-coloring
on (' is used to obtain a series of maximal matchings on G', which are
then pruned to obtain a series of critical k-matchings on G. The weighted-
edge-coloring algorithm of Gabow and Kariv [51] is used to edge-color G'.
It should be pointed out that the space complexity of the weighted-edge-
coloring algorithm, and hence of A3, is high: O(mnlog K).

Algorithm A3.

Input: Bipartite graph G = (4, B, E) with bound ¢ and maximum edge
weight K.

Output: A minimum-length k-coloring of G, as a sequence s of (M, b) pairs,

where M is a critical k-coloring and b is its duration.

0. s:=();
1. Add dummy traffic to make G k-complete with respect to g.
2. G’ == k-fill(G);

64

3. C := weighted-edge-color(G’); /* C is an edge coloring of G™*/
4. for each color ¢ £ C

5. M’, b := ecges colored by c, duration c is used; /* M’ is max.
matching on G’ */

6. M: =M NE;

7. s:=s|| { (M. b));

8. end for

9. Delete dummy t-affic from s.

10. end A3.

Theorem 3.7 Algorithm A3 takes time O(n®(logn + log K)).

proof. As noted eaclier, k-fill takes time O(n). The weighted edge coloring
algorithm [51] takes time O(|V{|E|log J) for a weighted bipartite graph with
largest edge weigh: J. In A3 we apply this algorithm to G’, where Vi =
on—k, |E| < (2n—k)?=0(n?),and J = K' < ¢ = mK . Thus the total time
is O(n®(logn + log K)) to obtain an edge-coloring of G'. Since the coloring
algorithm [51] uses O(|E|log J) colors, the number of iterations of the for loop
is O(n*(logn +log K')). Since |M'| =2n — k, lines 5 - 7 can be implemented
in time O(n), and :hus the for loop takes time O(n3(log n + log K)). O

Algorithm A3 is faster than KT and A1 for a large class of graphs, i.e., when
log K is small relaiive to nl5. Note that A2 is still faster than A3 for K =1

or when K is bourded by a small constant.

65

3.7 Experimental evaluation

In this section we present the results of an experimental evaluation of the
algorithms described in this chapter. This work has confirmed that our algo-
rithms provide results that are superior to the KT algorithm for the situations
studied. This experimental work extends the previous related work of Soma-
lwar [132], Kandappan [85], Balan [4] and Jain et al [78]. It has also led to
the investigation of even faster algorithms for data transfer scheduling, which

are heuristic in nature [76], and are discussed in a subsequent chapter.

We compare the effects of using the four scheduling algorithms discussed in
this chapter, namely KT, A1, A2, and A3. Since all four algorithms produce
optimal schedules, the key question is the amount of time taken to produce
those schedules. There are four parameters that affect the performance of
these algorithms: the number of vertices in each partition of the graph (ny and
n,), the number of edges m, the maximum number of simultaneous transfers
allowed k, and the maximum edge weight K. When the number of vertices
in each partition is the same, we set n = n; = ny. We evaluate the bahavior

of the algorithms as each of these parameters is varied.

Scenario: Volume Visualization of Scientific Data. Consider a sce-
nario where users, who may be physicians, health care workers, scientists,
etc., need to share and access a large image database. The images may con-
sist of medical information, e.g. computer-aided tomography (CAT) scans, or
oil prospecting information, e.g. seismic data from acoustical depth sound-

ings, and so on. The database is processed and stored at a parallel computer

66

site, and uszs view the images by requesting image files to be displayed on
their graphcs workstations. The parallel computer is a shared-bus system,
in which pmeassors and disks are connected to a set of common buses (or a
single highspeed system bus that is shared in a time-multiplexed fashion),
which allov mrltiple I/O transfers to proceed in parallel. In order to provide
a reasonabe r=sponse time for the users, the workstations are also connected
to the commem buses. A user request for an image file is processed by the
CPUs a: tie sarallel computer, and results in image data being transferred
from the swtern disks to the user’s workstation across the common buses. The
workstazioss cff-load some low-level image-processing tasks from the parallel
computer. such as rendering, shading, etc. In this scenario, the parallel co-
mputer’s merxzting system batches the image file requests and schedules the

resulting 1 O sransfers.

In terms o’ zhis parallel I/O application, n; and ng correspond to the number
of disks ani workstations, m the number of image files to be transferred, k
the nur=be of parallel buses in the system including the degree to which they
can be time-mmltiplexed, and K the longest file length in disk blocks. Using
the paralle I O application as a context helps to bound the ranges of values
of the parameters for which the scheduling algorithms are evaluated. Given
the scalabiity problems of shared-memory shared-bus parallel computer sys-
tems, we ealzate the algorithms for relatively modest numbers of disks and
workstatios nyp,ng < 256). Typically, we choose n = ny = np = 64. Con-
sistent witl tmis context, we also assume only a relatively modest number of
simultanems parallel transfers (4 <k <16, and k < nqy.ng). As far as the
number of Tansfers is concerned, we choose 100 < m < 1000 as a reasonable

range consdering the image database scenario sketched above. The maximum

67

file length, K, is increased systematically until the behavior of the program

seems to become clear from the trend of the increase in CPU time.

The algorithms were implemented as programs in C, generally following the
outlines sketched in this chapter. The implementation of KT and A2 was
a non-trivial adaptation from the implementation of Somalwar [132], which
handles unit-weight edges only. The Hopcroft and Karp {71} maximum car-
dinality matching algorithm used in A1 and A2 was implemented in a form
very similar to that given in the text by Moret and Shapiro [106]. In the
implementation of A2 we made two modifications: the recursive structure of
the program was replaced by iteration, and rather than performing k-filling

at every iteration, it was performed only at the start of the algorithm.

The main implementation difficulty was with the weighted-edge-color al-
gorithm of Gabow and Kariv [51], especially since their description omits two
important points. The first is regarding the conditions under which new col-
ors are assigned to edges; it was necessary to carry out a detailed case analysis
of the situations in which the weighted augmenting path algorithm should in
fact assign new colors to uncolored edges, taking into account the special cases
that occur when all the remaining uncolored edges are of unit weight. The
second omission was more serious, and was the key observation that as one
weighted colored edge is partially assigned a new color, all edges in the graph
bearing the old color must also be partially assigned the new color. Again,
special cases arise when all uncolored edges are unit-weight. These two points
are very important as they form the basis for guaranteeing that the number

of colors used in weighted-edge-color, and hence its time complexity, is

63

logarithmic in K rather than linear. Implementing weighted-edge-color to

correctly handle these two points is quite involved.

The programs implementing KT and A1-A3 were evaluated by measuring
the CPU time they take to execute when presented with uniformly randomly
generated bipartite graphs as inputs. Random graphs were generated for
selected combinations of the ny,ng,m and K program parameters using a
pseudo-random number generator [94]. The programs were executed on a Sun
Sparc 2 workstation running the SunOS™ Release 4.1.1 operating system,
after being compiled using the Sun Microsystems C compiler (bundled with
SunOS Release 4.1.1), with Level 4 optimization enabled (“-O4” option). The
data structures for the programs all fit in the 32 MB main memory of the
workstation, and so the programs do not perform any I/0 in order to execute,

except to read the input graph and print results.

The CPU time taken by a program for each input random graph was mea-
sured by the C Shell “time” command. Although this measurement tool has
a resolution of only 20 ms, it was not thought necessary to use a higher
resolution Iﬂeasurment (e.g. the system’s real-time clock) since most mea-
surements we take are on the order of seconds and the programs tend to
display rather pronounced differences in their execution times. For each se-
lected combination of the program parameters, one hundred random graphs
were generated, and the CPU time taken by each program, as reported by
the “time” command, was recorded for each input graph. The mean and
standard deviation of each set of 100 measurements was calculated using the
programs given in Numerical Recipes [119]. The data was plotted using the

DeltaGraph Professional™ software package, on a Macintosh system. The

69

same software was also used to generate smooth curve fits based on models

that were supplied to the program as candidates.

In the following we present the results of the experiments, the calculated
means, and plotted points and curve fits for each progream as each of the
four parameters, m,m,n and K were varied. Although the data presented
here are for n = n; = ny, in a previous study we have considered the case ny

ny and found qualitatively similar results [78].

3.7.1 Effect of varying the number of transfers

In Fig. 3.1 we plot the mean CPU time taken by each program implementing
KT, A1, A2 and A3 for inputs where the parameters n = n; = ngz = 64,
L =4 and K = 1 are fixed and m varies from 100 to 1000. That is, we see the
effect of varying the number of transfers while keeping all other parameters
fixed. Fach data point represents the mean of 100 measurements of CPU
time, and the error bars indicate one standard deviation above and below the
mean. The curve-fits shown in Fig. 3.1 correspond to the following equations

and correlation coefficients:

KT(t) =1.55x 1076 m? +2.18 x 1072 m — 2.18 x 1072,

R2? = .98, R1? = .99, R0% = .99

Al(t) =1.73 x 1076 m2 + 1.48 x 1073 m — 6.66 x 1072 ,

59 A3

KT

Al

25

CPU Time (sec)

S maaa o e s ey
0 160 2(‘)0 300 400 500 600 700 800 900 1000
Number of transfers, m

Figure 3.1: CPU time versus number of transfers for n = 64, k = 4, K = 1

R2% = .99, R1? = .98, R0* = .99

A2(4) =169 x 107 m —3.82 x 1072, R’ = .99

A3(t) = 7.37 x 107* mlogm — 0.258, R? = .99

The results plotted and curve-fitted in Fig. 3.1 display some interesting chai-
acteristics. It is interesting to see that the execution time of A2 in these
experiments increases very close to linearly with m, exactly as predicted by
the theoretical worst-case time complexity formula O(K'mn®logn) derived
for A2 in the previous section. On the other hand, we see that the other
three algorithms also show marked increases with m, which are not predicted
by the theoretical complexity analysis. This discrepancy is discussed in the

next section of this chapter.

71

Qualitatively, however, we see that for this combination of parameters, A2
out-performs the other algorithms significantly, and is likely to continue doing

SO as M Increases.

3.7.2 Effect of varying the degree of data transfer parallelim

In Fig. 3.2 the parameters n =n; = ng = 64, m = 1000, and K =1 are fixed
and k varies. That is, we see the effect of varying the degree of parallelism
in the data transfer while keeping all other parameters fixed. The equations

corresponding to the curve fits are given by:

KT(t) = 15.33 k=192, R* = .99

Al(t) = 12.23 k0%, R? = .99

A2(t) = 5.13 k084, R?* = .99

A3(t) = 30.49 k1%, R? = .99

For all four algorithms, the CPU time varies inversely with k, a trend not
predicted by the theoretical time complexity formulas derived earlier. It is
interesting to see that for all practical purposes the variation is proportional

to 1/k for KT and A1. This is discussed in the next section.

Qualitatively, we again observe that for this set of parameters, A2 out-

performs the other algorithms signficantly.

—1
(8]

A3

KT

Al

CPU Time (sec)

A2

Number of simultaneous transfers, k

Figure 3.2: CPU time versus number of simultaneous transfers for n =.64, m

= 1000, K = 1
3.7.3 Effect of varying the number of resources
In Fig. 3.3 the parameters k& = 4, m = 1000, and ' = 1 are fixed and
n = n, = ny is varied. That is, we see the effect of varying the number of
resources in the system while keeping all other parameters fixed. The curve
fits are given by:
KT(t) =4.45 x 1074 n? +1.01 x 107% n 4 1.26,

R2? = 99, R1? = .96, R0O* = .99

A1(t) = 1.17 x 1073 n'® 4+ 1.91 x 107! n° + 1.26, R* = .99

A2(t) = 1.18 x 1072 nlogn + 1.55, R* =.

O

9

30+
25
] A3 KT

20-

15

CPU Time (sec)

10 o A2
Al

04—y T T
0 2 64 9 128 160 192 224
Number of disks, n
Figure 3.3: CPU time versus number of resources for k = 4, m = 1000, K =
1

A3(t) = 2.75 x 1074 n? +5.68 x 1072 n + 0.02,

R2? = .99, R1? = .98, R0? = .99

We observe that, at least for the set of experiments described here, the per-
formance of both KT and A1l appears to be significantly better than that
predicted by their theoretical complexity formulas O(n®) and O(n*?) respec-

tively. This is discussed in the next section.

Qualitatively, we observe that for this set of parameters Al and A2 sig-
nificantly out-perform the other algorithms, with A1 likely to have better

performance than A2 only for n > 160.

74

3.7.4 Effect of large transfer lengths

In Fig. 3.4 the paramete= n = 64, k = 4, and m = 1000, are fixed while K
is varied. Thus the same —umber of transfers have to take place for all runs,

but their lengths are intezers drawn uniformly at random from the interval

[1, K]. The curve fits are ziven by:

KT(t)=023log K +0.22. R?=.96

Al(t) =0.14log K + 015 R*=.9

A2(t) = 0.08K +0.09, R?=.99

A3(t) = —8.65 x 10~* K* + 0.18K +0.29,

R2? = .82, R1%? = .96, R0? = .99

We observe a number of nteresting features in this set of curves. The first
is that although the CP” time behavior of both KT and A1l can be fit to
an O(log K) curve, the onstants involved are so small that it is essentially
independent of K for K > 10. This is as predicted by the theoretical time
complexity analysis. We also see that the CPU time for A2 increases very
close to linearly with K. again as predicted by theoretical analysis. On the
other hand, the behavior of A3 does not follow O(log K) for this range. This

is discussed in the followng section.

-~J
Ut

CPU Time (sec)

Maximum transfer length, K

Figure 3.4: CPU time versus maximum transfer length n = 64, k=4 m=

1000

Qualitatively, we observe that KT and A1 significantly out-perform the other
algorithms, both in terms of absolute CPU time and in terms of its variance for
random input instances. Between the better two algorithms, A1 consistently

out-performs K'T.

3.8 Interaction of theoretical and experimental eval-
uation

Our study of the four scheduling algorithms K'T', and A1 - A3, is an interest-
ing example of the importance of cross-checking theoretical and experimental
evaluations of algorithm behavior. In several sets of experiments described
above, we found that the measured time behavior of the algorithm differs

significantly from that predicted by theoretical analysis alone. These discrep-

76

Algorithm Method m k n K

KT theory const. comst. n® const.
experiment | m? 1/k n? const.

Al theory const. const. n*® const.
experiment | m? 1/k n®+n'® const.

A2 theory m const. n®logn K
experiment | m 1/k% n®logn K

A3 theory const. const. n®logn logK
experiment | mlogm 1/k'® n? K?

Table 3.1: Asymptotic theoretical vs. experimental behavior of algorithms as
input parameters vary. (See following Table also)
ncies motivate us to re-examine our theoretical and experimental evaluation

more closely, leading to a better understanding of the algorithms’ behavior.

The discrepancies we observe are summarized in Table 3.1, where we show
the asymptotic theoretical and experimental behavior of the algorithms as
each of the parameters m, k,n and K is varied. (The curve-fitted constants
have been omitted from the experimental results as we are only considering
the estimated asymptotic algorithm behavior). In this section we show that
most of these apparent discrepancies can in fact be resolved by one of two

ways: more sophisticated theoretical analysis, and further experimentation.

3.8.1 Effect of number of transfers

We first consider the marked discrepancy between theoretical and experimen-
tal behavior of KT and A1l as m is varied. We re-examine the theoretical
time complexity analysis presented earlier in this chapter and observe that it

can be made more precise in two ways.

7

Observation. The time complexity of the max-min bipartite weighted ma-
tching algorithm [92], MaxMinMatch can be refined to O(mn) from O(n?).
Similarly, the time complexity of the maximum cardinality matching algori-

thm MaxMatch [71] can be refined to O(mn*) from O(n??). O

Lemma 3.8 The number of times that critical k-matchings have to be calcu-
lated in either KT or A1, i.e., the number of iterations L, can be refined to

L =O0(m +n) from L = O(n?).

proof. Recall that a new critical k-matching must be calculated, in both
KT or Al, if either the weight of one of the edges covered by the matching
decreases to zero, or a vertex that was previously not critical weight becomes
critical. Thus at every iteration of the algorithm, either an edge can be
deleted, or a vertex becomes critical, or both. Now observe that once a vertex
becomes critical it remains critical until the algorithm terminates (since it
must continue to receive full service if the algorithm is to produce a schedule
which meets the lower bound on schedule length). Hence any vertex can be
promoted from being non-critical to critical at most once during the execution
of the algorithm. Also, any edge can be deleted at most once. Since at each
iteration at least one of these events (edge deletion or vertex promotion)

occurs, there are at most O(m + n) iterations. o

A careful reading of the proof in [9] shows that the authors have used a similar
reasoning to the one we have presented above, but have set m = O(n?),

leading to the L = O(n?) bound.

78

Theorem 3.8 The time complezity of algorithm KT can be refined to O(m?n
+mn?) from O(n®), and of algorithm A1l to O(m*n® +mn'?®).

proof. The time complexity of both KT and A1 is given by L times C, the
time for the critical k-matching algorithm used. From the observation, C' =
O(mn) for KT and C = O(mn?®) for Al. From Lemma 3.8, L = O(m + n).
The theorem follows. =

We can use this result to explain the experimentally observed variation of

KT and A1’s running time not only with m, but with n.

We now consider the discrepancy between the theoretical time complexity of
A3. O(n®(logn +log K)), and the experimentally observed variation with m.
Recall that A3 performs k-fill on the input graph G with n vertices and m
edges to produce a graph G’ which is then colored using the weighted-ege-
color algorithm of Gabow and Kariv [51]. We first show that k-filling G only

increases the number of edges in G’ to O(m + n) instead of O(n?).

Lemma 3.9 A bipartite graph with n vertices and m edges can be converted
to a k-filled graph with at most O(m+n) edges, assuming that weighted edges
can be used for k-filling.

proof. Let G = (A, B, E) be the input graph, w its vertex weight and W its
total weight. For ease of exposition we assume |A| = | Bl = n in the following;

the case |A| # |B| is very similar and left to the reader.

79

From the time complexity analysis of the k-complete algorithm we see that
at most O(n) edges are added during this phase. The k-filled bipartite graph
G' = (AUC,BUD,EU E') is obtained by adding n — k vertices to each
partition of G and by adding edges E' C (A x D) U (B x C) until all vertices

have weight gq.

It has been shown that k-filling can always be done [10]. We show by induction
the proposition that k-filling G requires adding at most 4n edges, as follows.
It suffices to consider vertices in only one partition of G, say A, with the
number of its vertices examined, j, being the induction variable. Initially the
first vertex a; € A has been examined. An edge of weight ¢ — wt(ay) is added
from a, to d;, the first vertex in D; the proposition holds. Assume that after
§ vertices have been examined, at most 2j edges have been added. When
a;41 is examined, let di be the first vertex in D with weight less than ¢. An
edge (aj41,dx) of weight w' = ¢ — max(wt(a;4+1, wt(dr)), and another edge
(aj41,drs1) of weight ¢ — w’, are all that are needed to make wt(aj41) = q-

Thus the induction is complete and the proposition holds.

It follows that if non-unit-weight edges are used for k-filling, G’ has O(m+n)

edges. a

Notice that making a graph k-filled with respect to its bound increases not
only its number of edges but also the maximum edge weight. In fact, during
k-complete, for instance, the maximum edge weight can increase from K to
as much as mK. To see an example of this, consider the graph with n =5,

m = 4 edges each of weight K = 2 connected from a single vertex a € A

80

<o four distinct vertices in B, and given k = 3. Then w = W =8, and
g = 8, so that edges of total weight kq — W = 16 need to be added while not
increasing the maximum vertex weight. This can be done by adding three
edges, of weights 8, 6 and 2, respectively, making K' = 8 = mK. However,
the the bound of the graph, ¢, remains unchanged, and so the time complexity

analysis of A3 and other algorithms is not affected.

Theorem 3.9 The time complezity of A3 can be refined to O((nm + n?)
(logm + log K)) from O(n® (logn + log K)).

proof. The weighted-edge-color algorithm of [51] takes time O(|V'| |E|
log J) where V' is the total number of vertices and J is the maximum edge
weight of G’. While [V’| = O(n) and J < mK, from Lemma 3.9 we have
|E'| = O(m + n), giving the new complexity estimate. A similar argument

holds for the while loop in the A3 algorithm. O

As an aside, we make the following observation here, which will be used in a

later section.

Observation. If only unit-weight edges can be used for k-filling, G’ can have

upto O(nm) edges. o

3.8.2 Effect of data transfer parallelism

We consider the effect of increasing k, the number of simultaneous transfers

posssible, upon the behavior of the four scheduling algorithms.

81

Informally, we can consider this effect by recalling that the length of the
schedule is given by the bound of the graph, ¢ = max(w, [W/k]). In general,
as k decreases the second component of ¢ dominates, and the schedule length
increases. Since all four algorithms are essentially iterative computations of
matchings (or, in the case of A3, of augmenting paths), and the number of
‘terations increases with the schedule length, as k decreases the execution
time of all four algorithms increases. For situations where [W/k] > w, the

CPU time for all four algorithms should vary as 1/k.

3.8.3 Effect of transfer lengths

The theoretical advantage of A3 over A2 is that its time complexity is poly-
nomial in K rather than a pseudo-polynomial. However, while A2’s CPU
time increases linearly with K as expected for 1 < K < 80, A3 appears to

perform much worse.

We observe from the variation of A3 with m,n, and k that it appears to
have much larger constants of variation than the other three algorithms. We
thus extended the investigation of A3’s behavior to larger values of K in
order to estimate its asymptotic behavior. However, as noted earlier, A3’s
storage requirements are very high. In order to keep all data structures in
memory, experiments for K > 80 could not be conducted on the Sun Sparc
2 workstation, which has 32 MB of main memory. The program was run
instead on a Solbourne Series5e/900™ workstation with 128 MB of main
memory. The workstation runs Solbourne’s UNIX-like OS/MP 4.1A.1 and

can run programs compiled for the Sun Sparc 2 without recompilation. Input

o0
S

20 4

15

CPU Time (scc)

0 200 400 00 800 1000 1200
K

Figure 3.5: CPU time on Solbourne versus maximum transfer length for n =
64, k=8 m = 100

graphs, time measurements, and mean CPU times were generated as before,
and plotted with error bars and curve fits as before, to yield the plot in Fig.
3.5. Notice the relatively large standard deviation of the measurments. The

curve fit for K > 80 is given by:
A3(K) = 9.83log K — 24.2, R* =0.96

The revised comparison of theoretical and experimental results in Table 3.2

displays good agreement between the two.

83

k

Algerithm Method m n K
KT theory m? 1/k n® const.
experiment | m? 1/k n? const.
Al theory m? 1/k n®+4n!® const.
experiment | m? 1/k n®+n!® const.
A2 theory m 1/ n*logn K
experiment | m 1/k* nlogn K
A3 theory mlogm 1/k n? log K
experiment | mlogm 1/k'? n? log K

Table 3.2: Revised asymptotic theoretical vs. experimental behavior of algo-
rithms as izput parameters vary

3.9 Discussion

3.9.1 Previous related work

Algorithms A1 - A3 provide a method for scheduling parallel data trans-
fers such as I/O in multiple-bus parallel computers and time slots in TDMA
switches, ad are a substantial improvement in both theoretical and exper-
imentally chserved execution time over algorithm KT. Since Al - A3 are
framed in ‘erms of optimal edge-coloring of bipartite multigraphs, we review
this literatire briefly. In Table 3.3 we summarize the previous work. We
emphasize shat almost all the literature surveyed consists of theoretical work
only. Very few studies of the type reported in this chapter have been per-
formed to experimentally evaluate the behavior of the scheduling and coloring

algorithms that have been developed.

First consider the optimal edge-coloring of bipartite graphs with unit-weight
edges. Vizing [137] developed an algorithm using the basic notion of aug-

menting pzchs that takes time O(mn). Gabow [48] exploited the partitioning

84

of a bipartite graph by means of Euler partitions in order to apply the divide-
and-conquer strategy to edge coloring algorithms. This idea has been used
repeatedly [50, 51, 29, 132, 78]. In the same paper Gabow noted that the
Mendelsohn-Dulmage method (see [92]) could be used to construct an algo-
rithm to obtain a matching covering all vertices of maximum degree. This
matching algorithm takes time O((m + n)n®®) and was used in conjunction
with the divide-and-conquer strategy to obtain an edge coloring algorithm of

time complexity O(n + mn®®logn).

Gabow [48] also observed that in the special case that the degree of the
graph is a power of 2, the divide-and-conquer algorithm need never call the
matching algorithm, allowing an edge coloring to be found in time O(n +
mlogn). Gabow and Kariv [50, 51] use this observation to obtain faster
edge-coloring algorithms for graphs whose degree is not a power of 2, by
repeatedly constructing partially-colored subgraphs whose degree is a power

of 2 and coloring them efficiently.

Finally, Cole and Hopcroft [29] use the idea of Euler partitioning the graph in
order to design a matching algorithm that covers all vertices of maximum de-
gree. This matching algorithm runs in time O(max(m,n logn log® d)), where
d is the graph degree, and is faster than the Mendelsohn-Dulmage matching
method used by Gabow [48] by a factor of roughly O(n®®); it leads to an

O(mlogn) algorithm for edge coloring.

There has been relatively little attention paid to the problem of edge-coloring

weighted bipartite graphs. Before we review this literature, it is interesting

85

Reference Unit-Weight Edges | Unequal Weight
(K = 1) Edges (K > 1)
Unlimited transfers, k = n:
Vizing, 1964 [137] mn
Gonzalez and Sahni, 1976 [62] | m? m?
Gabow, 1976 [48] n +mn®logn
Gabow and Kariv, 1978 [50] | mn®® logn
Gabow and Kariv, 1982 [51] | mlog®n; n’logn | nmlog K
Cole and Hopcroft, 1982 [29] | mlogn
Limited transfers, k < n:
Bongiovanni et al, 1981 (KT) | m’n + mn? m?*n + mn?
[9, 10]
Somalwar, 1988 [132] mn'®logn
Al m2n0 & mnls m?n®5 + mnl
A2 mn®®logn Kmn®3logn
A3 (n? + nm)logm (n? + nm)
(log m + log K)

Table 3.3: Summary of previous related work

to discuss an influential early application, that of constructing class-teacher
timetables [63], also called the timetabling problem [8, 31]. To quote Gotlieb
in 1962, “For a high school with thirty or more classes, even after the sets of
teachers to be associated with a given class are assigned, it takes many man-
weeks to draw up a schedule specifying when teachers and classes are to meet.
.. [I]n the Metropolitan Toronto area alone, over sixty large time-tables are

drawn up annually” [63].

The class-teacher timetabling application in its simplest form can be modeled
as a problem of edge-coloring a weighted bipartite graph, where the vertex
partitions represent teachers and classes, the edges represent the teachers as-
signed to a class, and edge weights represent the number of contact hours

[8]. The application as specified by Gotlieb included the additional prac-

86

tical constraints that the total number of time slots available is fixed and
that for certain time slots either a class or a teacher is unavailable; for these
constratints the scheduling problem is NP-complete [40]. However, Gotlieb’s
application has continued to attract attention because of its practical impor-

tance and theoretical applicability [31, 142].

It is interesting to note that possibly the earliest efficient algorithm for edge-
coloring weighted bipartite graphs [62] was developed in the context of a
scheduling application, namely the scheduling of jobs in an open shop® Gon-
zalez and Sahni’s algorithm [62] finds shortest augmenting paths to obtain
matchings, a strategy similar to that used in Hopcroft and Karp’s matching
algorithm [71], and thereby obtain an edge coloring algorithm that runs in
time O(m?). Gabow and Kariv [51] again exploit the observation that graphs
whose degree is a power of 2 can be colored efficiently to obtain an algorithm
that takes time O(nmlog K), where K is the largest edge weight; this is faster
than the algorithm of Gonzalez and Sahni [62] for a large class of graphs, i.e.,

whenever nlog K = o(m).

The problems we address in this chapter, SimpleDTS and DTS, are mod-
eled as optimal k-coloring of a bipartite graph, i.e., optimal edge coloring a
bipartite graph where each color can be used to color at most k edges. Opti-
mal k-coloring also directly models the class-teacher timetabling application
if at most k classrooms are available at any given time [8]. However, to our

knowledge, the only previous algorithmic solutions for optimal k-coloring of

3 An open shop is the job-shop problem (defined in Chapter 2) with the restriction that
the precedence graph has no edges, i.e., tasks can be performed in any order.

87

bipartite graphs are by Bongiovanni et al [10] and Somalwar [132]. Algori-
thm KT of Bongiovanni et al [10] can operate on graphs with non-unit edge
weights, and, as described in this chapter, takes time O(m?*n +mn?). The al-
gorithm of Somalwar [132] is applicable only to graphs with unit edge weights,
and takes time O(n'Sqloggq), where ¢ is the bound of the graph, i.e., takes
time O(mn!®logn). As shown in this chapter, our algorithms A1 - A3 are

faster than either of these algorithms.

It is interesting to compare the performance of the algorithm of Somalwar
[132] and A2 for unit-weight edges (see Table 3.3), since A2 basically extends
Somalwar’s algorithm to the unequal weight edges case. The reason that A2
is faster by a factor of n, even if only unit-weight edges are allowed in the
input graph, is that A2 can handle weighted edges being introduced by k-fill,
while Somalwar’s algorithm cannot. Thus for A2 the k-filled graph has only
O(m +n) edges instead of O(mn) edges (see Lemma 3.9 and the Observation
following it). The increase in the number of edges that must be processed by

Somalwar’s algorithm accounts for its time complexity being higher by O(n).

It is for this reason also that any simplistic application of the k-filling tech-
nique to a previous unit-weight edge coloring algorithm will result in an algor-
ithm that performs worse than A2. For example, consider a simple extension
of Cole and Hopcroft’s [29] algorithm to handle K > 1 and k < n. Firstly,
weighted edges will be replaced by unit-weight edges, making the number of
edges O(mK). Then the k-filling technique will increase the number of edges
to O(mnK), vielding an O(Kmnlogn) algorithm for edge coloring, which is

worse that A2 by a factor of O(n®®). (As an aside, we observe that Cole

88

and Hopcroft’s algorithm can be extended in this way to perform better than

Somalwar’s).

Similarly, a simple extension of Gonzalez and Sahni’s [62] algorithm to han-
dle k < n by k-filling will result in an algorithm that is slower than A2 for
bipartite graphs with unit-weight edges by a factor upto O(n); for weighted
edges it will be faster than A3 by a factor O(logn +log K) for sparse graphs,
and slower by a factor O(n/(log n+log K)) for dense graphs. (However, such
an extension to Gonzalez and Sahni’s algorithm may be useful in practice, as

it is relatively simple to implement and takes much less space than A3).

In summary, algorithms A1 - A3 generalize previous edge coloring algorithms
[137, 62, 48, 50, 51, 29, 132] by allowing non-unit edge weights as well as a
restriction on the number of edges that may be colored with a single color.
The only algorithm that is as general as A1 - A3is KT [9, 10], and as shown
in this chapter, our algorithms out-perform it both in terms of theoretical and

experimentally-measured performance.

3.9.2 Conclusions and future work

A key question that arises at this point is: which algorithm should be used
for data transfer scheduling in bipartite architecture graphs, and under which
operating conditions? Our theoretical and experimental results show that for
all the situations considered in this chapter, either A1 or A2 should be used

over the previous best algorithm, KT. In general, A2 is the algorithm of

89

choice unless either the maximum transfer length K is greater than a small
constant, or the number of communicating entities (disks, transmitters, etc)

n is very high, in which cases A1l should be used.

It is interesting to consider the poor observed performance of A3. This seems
to be because of two reasons. Firstly, the conditions under which its exper-
imentally measured performance was better than A2 were very limited: a
relatively small number of transfers m, of large lengths K, to be carried out
between relatively few entities n, with a high degree of parallelism k. This is
because the constants in A3’s asymptotic time complexity seem to be very
high. Secondly, the theoretical worst-case space complexity of weighted-
edge-color, and hence A3 is very large: O(mnlog K) [51]. Our experiments
show that in fact even on average the amount of space required is unaccept-
ably high for most situations of practical interest. For instance, 32 MB of
main memory were not sufficient to handle input graphs with parameters
greater than n = 64,k = 4,m = 1000, and K = 80. Performance consid-
erations aside, it was found that A3 was more difficult and time-consuming
to implement than any of the other algorithms, and consisted of about twice
as many lines of C code. We conclude that although the algorithmic tech-
nique underlying weighted-edge-color is elegant and of theoretical interest,

it does not lead to a practical algorithm for our application.

For future work, there are two interesting questions. The first is whether
Gonzalez and Sahni’s algorithm [62] can indeed be extended to solve DT'S,
either by using the k-filling technique or by some other means, and if so,
whether its performance when implemented is fast enough to make it an

attractive practical solution to DT'S for interesting applications. The second

90

is whether k-filling is needed at all for optimal k-coloring of bipartite graphs,
i.e., perhaps this constraint can be satisfied at a lower level in the coloring

algorithm, say at the level of finding augmenting paths.

To summarize our contributions in this chapter, we have developed and ex-
perimentally evaluated three new algorithms for scheduling data transfers in
communications and parallel computer systems. These algorithms apply to
a significant class of applications, such as satellite data transfers and parallel
I/O due to 3D visualization software. The algorithms apply to a common
class of architectures, including satellite TDMA switches, and shared-bus
multiprocessors such as the Sequent [100], Encore Multimax [143] and the
IBM RP3 [115]. Our theoretical and experimental investigations show that
our algorithms perform significantly better than the previous best available
algorithm, KT. Our algorithms also generalize previous theoretical work on
edge-coloring algorithms for bipartite graphs [137, 62, 48, 50, 51, 29, 132],
both by allowing weighted edges and restrictions on the number of edges that
may be colored with a single color. Finally, to our knowledge, ours is the only
extensive experimental study of the behavior of four edge-coloring algorithms
for bipartite graphs in which the effects of varying the problem parameters
are investigated systematically. Such experimental studies are very valuable
from a practical standpoint; for example, we have shown that the practical
usefulness of the weighted-edge-color algorithm [51] used in A3 is severely

limited both in terms of space and time cost.

Chapter 4

Heuristics for Scheduling in Bus Architectures and
TDM Switches

In the previous chapter we discussed optimal algorithms for scheduling data
transfers in shared-bus multiprocessors and single TDMA switches. While
the algorithms we developed, A1 - A3, are in general faster than previous
optimal algorithms like KT [10], we would like to have even faster algorithms,
since in most applications scheduling algorithms are executed repeatedly, and

any gain in speed helps overall system performance.

In this chapter we turn our attention to approximation algorithms (or heuris-
tics) for the SimpleDTS and DTS problems restricted to unit-length tr-
ansfers. Two simple greedy heuristics for unit-length transfers, HDF and
HCDF, have been proposed and experimentally evaluated by Somalwar [132].
In graph-theoretic terms, these heuristics are essentially approximation algo-
rithms for edge-coloring bipartite graphs with unit-weight edges. Both heur-
sitics performed well in experiments, both with random input graphs as well
as input graphs simulating the projected parallel I1/0 workload generated by

applications such as 3D visualization and split-step migration. For instance,

91

92

for experiments using random bipartite graphs as inputs, one of the heuristics
always generated the exact solution, while running in less than 10% of the

time taken by an optimal algorithm [132].

While Somalwar’s result is encouraging, it is obvious that experimental eval-
uation can only examine a small number of combinations of the input pa-
rameters, and thus explore only a tiny fraction of the input space. In this
chapter we present the first analysis of the worst-case execution time of the
heuristics, as well as an analysis of their divergence from the optimal solution
in the worst case. We will quantify the divergence from the optimal solution

by finding a performance guarantee for each algorithm, defined as follows.

Def. If an approximation algorithm produces a schedule of length L'(RG)
for a problem instance with resource graph RG, and L(RG) is the optimum
schedule length, then the performance guarantee of that algorithm is P(n),
where P(n) is the maximum value of the ratio L'(RG)/L(RG), over all RG

with at most n vertices.

(For the algorithms in this chapter, we will be actually be interested in P(d),
where d is the degree of RG.) In sec 4.1 we derive a bound for the worst-case
time complexity and the performance guarantee for Somalwar’s heuristics
[132]. We remark that this bound is tight, i.e., it is possible to systematically
generate graphs for which the heuristic performs as badly as the worst-case.
In section 4.3 we compare Somalwar’s experimental results [132] with the

theoretical results, and finally we end with a discussion.

93

4.1 The Highest Degree First (HDF) Heuristic

We define the Unit — Simple DTS problem to be the Simple DTS problem
restricted to the case where all tasks have unit length, ie., for all ¢ € T,
Lp(t) = 1. By the observations made in the previous chapter, in graph-
theoretic terms, Unit — Simple DTS corresponds to the problem of finding
a minimum edge-coloring of a bipartite graph with unit-weight edges. Sim-
ilarly, Unit — DTS corresponds to finding a minimum edge-coloring for a
bipartite graph with unit-weight edges given that at most k < n edges may
be colored with a single color. We analyze the behavior of HDF first for
Unit — Simple DTS, and then for Unit — DT'S.

4.1.1 The Unit — SimpleDTS Problem

We introduce some additional terminology. Vertices a,b € A U B of a graph
G = (A, B, E) are called partners if (a,b) € E. A vertex is said to be colored
with color ¢ if some edge incident upon it is colored ¢. Note that an edge has
a unique color but a vertex may have multiple colors. A vertex is said to be
fully colored if every edge incident upon it is colored. The degree of a vertex
v is denoted d(v). The degree of the graph G by d(G), or simply d if clear

from context. A sequence is denoted by angle brackets.

Somalwar’s Highest-Degree-First HDF heuristic for Unit — Simple DTS for
a graph G = (A, B, E) is specified as algorithm HDF below. The Sort-

by-degree() procedure sorts the vertices in order of descending degree. The

94

“hreak” statement exits the smallest enclosing loop. The basic idea of HDF

is give priority to coloring the vertices in order of their degree.

Algorithm HDF
Input: Bipartite graph G = (A, B, E)
Output: An edge-coloring of G

1. (vy,...,v,) 1= Sort-by-degree(A U B);
2. while E # {}

3. E={}

4 for each v read in sequence from (vy,...,v=) {
5 for each e = (v,w) € E {

6. if e is not adjacent to any edge in £’ {
7 Add e to E' and remove it from F
8 Reduce degree of v,w by 1 and

remove from (vy, ..., vp)
9. break
10. }
11. }
12. }
13. Color all edges in E’ with a new color
14. (v1,...,05) 1= Sort-by-degree(A U B);
15. }
16. end

Recall that the minimum number of colors, or schedule length, is d for a

bipartite graph of degree d. How many colors will HDF use in the worst

95

case” It is useful to answer a more general question instead: how many colors
will =z greedy heuristic use in the worst case? We first specify the greedy
heursic which, for every color, attempts to color as many edges as possible

with 12at color.

Algorithm Greedy Heuristic
Inpu:: Bipartite graph G = (A, B, E)
Output: An edge-coloring of G

. Assign some order F = {ey, €, ..., €n) to the edges of E
=0
. while F' # {} {

]

(W]

4. for each e read in sequence from F {
3. if e can be colored with color ¢ {
6. color e with color 2

7. remove e from E and F'

(2]
S

10 ii=1+4+1

4
oy
[S—

Clea-’v, any execution of HDF can be repeated by the greedy heuristic by
choosng an appropriate initial ordering of the edges. Thus HDF is a special

case of the greedy heuristic. We now state a simple but useful fact.

Lemma 4.1 At the end of iteration i of the while loop of the greedy heuristic,
if some vertez v is not fully colored and is not colored ¢, then all of v's partners

are clored 1.

96

proof. Suppose not. _hen v as well as at least one of its partners, say w,
is not colored i. But izen the greedy heuristic would have colored the edge

(v, w) with z. O

Lemma 4.2 The gresiy heuristic produces a coloring using at most 2d — 1

colors for a bipartite raph of degree d.

proof. For a vertex v. let deg(v) be its degree and P(v) its set of partners.
Let L(v) = deg(v) + zax{deg(w) : w € P(v)}. From Lemma 4.1, every color
used by the greedy hezristic reduces L(v) by at least 1. A special case occurs
for the last color use: to color v; for this case, there is one remaining edge
incident on v, so tha: when it is colored L(v) is reduced by 2. Therefore at
most L(v)—1 colors &= used to color all edges incident to v. Since L(v) < 2d,

the result follows. O

It can be shown that shis bound is tight for HDF. A simple example where
the 2d — 1 bound or schedule length is met for d = 2 is the four-transfer
example given in Chipter 1. However, we can prove that such an example
bipartite graph G(d) :zn be constructed for any positive integer d. In fact, we
will show that G(d) is = tree. We first introduce some notation and definitions;

see Fig. 4.1 for exarzles of their use.

Notation. Upper-cise italic letters denote vertices or subtrees of a tree;
they may be subscrizzed. If A and B are vertices, A; B denotes that they
are siblings, and 4 = cenotes that Ais the parent of B. The letter R may

97

be used to distinguish the root of a (sub)tree, and C for its child. Thus
R(Cy; Cy), where the C; are distinguished vertices, denotes a binary tree of
two levels. A set of identical siblings is denoted using an array notation: thus
R(C|2)) also denotes a binary tree with two levels. Angle brackets have higher
precedence than semi-colons. Thus R(C1;C3) ; A denotes a forest with two

trees, and R{C;C2; A) denotes a ternary tree with two levels.

Def. Two trees S and T' with roots Rs and Rr, respectively, are root-merged
by deleting Rs and Rr (along with any incident edges), introducing a vertex
R, and adding edges from R to every child of Rs and Rr. Using the notation

above, and letting + denote root-merging, let

S = Rs(Sy; Sa; - Si)

T = Rp(Ty; Ty; .. 15)

Then S + T = R(Sy;...; Si; T1; - 1) -

We now construct two families of trees to be used later in the construction of

G(d), and consider how they could be colored.

Def. The tree F(i,d), with d > 1, is defined mutually recursively with the

tree H(i,d) as follows. See Fig. 4.1 for examples.

1. Fy4 consists of a single vertex.

98

Figure 4.1: Example construction to show HDF takes up to 2d — 1 colors to
color a graph of degree d

o

. Hyg = Ri{Cy{Foald —1])

Fyg= H(1,d)

CFor 1 <i<d, H(#,d) = R{(C; (Fioy14ld —1]))
CForl<i<d Fig=H g+ Hyg+ ...+ Hiy

- w

Ot

() has precedence over -+, which has precedence over ;. Observe that for every
tree H; g4, the child of the root, C;, has degree d, i.e., is critical. Also note

that for every Fjg, the children of its root are critical.

Lemma 4.3 For every tree F g, 0 < 1 < d, there exists a sequence of choices

99

made by HDF such that the root of F;4 is colored with every color in the set

{1, ..., i}.

proof. By induction over j.

base. j = 1. For Fiy 4 = Hi4 = Ri(C1(S[d — 1])), the choice of coloring edge
(R, C4) with color 1 suffices.

hyp. For all F;4, 0 <t < j < d, there exists a sequence of choices made by
HDF such that the root of F; 4 is colored with all colors in {1, ..., i}.

ind. Consider the coloring of Fj4. By definition,

Fa=Hig+ Hyg+ ... + Hja

= Ri{C1(Foald — 1)); Co(Frald = 11); .. Ci(Fi1ald = 1])3)

We will show that there is a sequence of choices made by HDF such that
for all 7,0 < 1 < j, edge (R;,C;) in the expression above is colored by color
;. First note that by the hypothesis, for every i, 0 < ¢ < j, there exists a
sequence of choices s; such that the root of F. 4 is colored with all colors in
{1,...,i}. Clearly, it is possible to merge these sequences appropriately so
that the resulting sequence, s, colors the root of every F;q with all colors in

{1,...,i}. We now show how s is extended by a sequence of choices that can

be made by HDF.

100

Since every C; is critical, and uncolored, it is eligible to be chosen by HDF.
Let the first choice be to color ;. By applying the hypothesis the root of
every Fp g, is not colored; let HDF choose to color C; by coloring (R;, C1)
with the color 1. Now let HDF choose to color Cp. By the hypothesis, the
root of every F} 4 is colored with color 1; also, R; was just colored 1. Therefore
C, cannot be colored using color 1. Let HDF choose to color C3 by coloring
edge (R;,C,) with color 2.

HDF continues to choose to color each C; in turn by choosing to color (R;, C;)
with color i. The sequence of HDF’s choices is concatenated to the sequence

s, and this gives the result. O

Theorem 4.1 For any positive integer d, there ezists a bipartite graph of
degree d and a sequence of choices made by HDF such that HDF uses 2d—1

colors to color the graph.

proof. By construction of the graph. Let

G(d) = R{F4_1,4[d])

From Lemma 4.3 there exists a sequence of choices made by HDF such that
the toot of every Fy_; 4 is colored with all colors in {1,...,d — 1}. Therefore,
each of the links incident to R will have to be colored with a color not in the
set {1,...,d— 1}, and each will require a distinct color. Therefore d colors are

required to color the links incident to R in addition to the colors {1,...,d—1},

101

ie. at least d+d — 1 = 2d — 1 colors are required to color G(d). By Lemma
4.2 we know that HDF, being a greedy algorithm, requires at most 2d — 1
colors to color G(d). It follows that there exists a sequence of choices for

which HDF uses 2d — 1 colors to color G(d). O

To summarize, by Lemma 4.2 we have shown that any greedy heuristic, and
hence HDF, uses at most 2d — 1 colors to color a bipartite graph, and by
Theorem 4.1 we have shown that for any d we can construct an example for
which HDF actually uses 2d—1 colors. We can use Lemma 4.2 to also obtain

the time complexity of HDF.

Theorem 4.2 HDF takes time O((m + n)d) to solve Unit — Simple DTS,

and produces a schedule of length at most 2 — L times the optimal length.

proof. For the time complexity, note that Sort-by-degree() takes time O(n+d),
if a bucket sort is used. For ea?:h color, each edge is examined at most once.
Thus each color (i.e., iteration of the while loop) takes time O(m + n + d)
[132]. Using Lemma 4.2, the total time is thus O((m + n + d)(2d — 1)) =

O{(m + n)d). The performance guarantee follows from Lemma 4.2 also. O

4.1.2 The Unit — DTS Problem

The program for implementing the HDF heuristic for handling the situation
where a color may be used to color at most k < n edges is a slight modification

of the program given above. We add the following line,

102

11.5 if |E'| = k, break

That is, after every edge is added to E’, the program checks if |E’| = k, and
if so, does not add any more edges to E’ for the current color. We call this

program MHDF for convenience.

The analysis of MHDF is slightly more complicated than for HDF. In par-

ticular, we are not able to prove a bound that is tight for all inputs.

Lemma 4.4 MHDF produces a coloring using at most |m/k| + (2d — 1)
colors for a graph of n vertices, m edges, and degree d, if at most k <n edges

may be colored with a single color.

proof. Suppose HDF was used on the graph instead of MHDF. In the worst
case it uses 2d — 1 colors, with color ¢ coloring m; edges, and 2lm; = m.
If MHDF uses the same sequence of choices, coloring m; edges may require

up to |m;/k] + 1 colors. The result follows. O

Note that this bound is exact for the graph m =n =5,d =1, k = 2. On the
other hand, it is not tight for the class of graphs with k =n and k =1. In
the former case, MHDF is simply HDF, so at most 2d—1 colors are needed.

In the latter case, exactly m/k = m colors are needed.

103

4.2 The Highest Combined Degree (HCDF) Heuristic

An obvious modification to the HDF heuristic is to give preference not nec-
essarily to vertices of highest degree, but to edges whose end vertices have
the highest combined degree. Somalwar [132] experimentally investigated this
Highest-Combined-Degree-First heuristic, HCDF, and found that it gave op-
timal or near-optimal solutions for input graphs generated randomly. In this
section we find the time complexity and performance guarantee of HCDF,
for both the Unit — SimpleDTS and SimpleDT'S problems. This turns out

to be a simple extension to the analysis for HDF.

Our first observation is that HCDF is also a special case of the greedy heu-

ristic. We thus obtain the following result.

Theorem 4.3 HCDF takes time O((m +d)d) to solve Unit — SimpleDTS,

and produces a schedule of length at most 2 — L times the optimal length.

proof. The performance guarantee follows from Lemma 4.2 since HCDF is
also a greedy heuristic. For the time complexity, we observe that the edges
can be sorted using a bucket sort, with buckets in the range 1 to 2d, and for
every color, each edge is examined at most once. Therefore every color takes

time O(m + d), and there are at most 2d — 1 colors used. 0

We can also show that for certain graphs exactly 2d — 1 colors will be used

by modifying the construction used for HDF.

104

Theorem 4.4 For any positive integer d, there ezists a bipartite graph of
degree d and a sequence of choices made by HCDF such that it uses 2d — 1

colors to color the graph.

proof. Construct G(d) as described for Theorem 4.2. We will construct a
new tree T'(d) by modifying G(d); initially set T(d) = G(d). We call an edge
critical in G(d) or T(d) if the combined degree of its end vertices is 2d. For
all i € {1,...,d}, edge rc(i,d) in G(d) has at least one critical vertex; for each
such edge, ensure the corresponding edge in T(d) has both end vertices critical
by adding appropriate edges and vertices if necessary. Now the sequence of
edge-colorings used by HDF to color re(i,d), i € {1,...,d}, can be used by
HCDF. Thus it takes d — 1 colors before the root of T'(d) is colored, and an
additional d colors to color all the edges incident to the root. Since HCDF
is greedy, by Lemma 4.2 all other edges can be colored using 2d — 1 colors.

O

Finally, we call the algorithm HCDF modified to color at most k < n edges
with the same color the Modified-HCDF algorithm, MHCDEF. For this algo-

rithm applied to the Unit — DT'S problem, we can obtain a result similar to
HDF.

Lemma 4.5 MHCDF produces a coloring using at most |m/k] + (2d - 1)
colors for a graph of n vertices, m edges, and degree d, if at most k < n edges

may be colored with a single color.

proof. Similar to Lemma 4.4. O

105

4.3 Comparison of experimental and theoretical re-
sults

Somalwar [132] has experimentally evaluated the performance of HDF and
HCDF on instances of the Unit — DTS problem He compared their behavior
to that of the exact algorithm A, which is a special case of A2 for unit-weight
edges implemented by Somalwar [132]. We also compare their behavior to the

performance guarantees derived in this chapter.

Somalwar performed this experimentation in the context of the parallel I/O
application, i.e., scheduling parallel I1/0 operations for a shared-bus multi-
processor system. For this context, certain parameters of the input graph
G = (A, B, E) were fixed. In particular, it was chosen that n; = |A| = 16,
ny = |B| = 64, m = E| varied from 100 to 1000, and k varied from 4 to 16.

Edges were generated using a pseudo-random generator.

Somalwar [132] fourd that in his experiments both HDF and HCDF pro-
duced schedules that are almost always of the optimal length. In that sense,
they perform much better on average, for this set of experiments, than their
performance guarantees predict for the;xr worst case behavior. Although these
results seem surprisingly good, there are some recent related experimental
results to support them. Moret [105] found that for maximum cardinality
bipartite matching, using a simple greedy heuristic similar to HDF delivered
an optimal solution at least 99% of the time. Since the basic operation of
edge-coloring unit-weight graphs can be regarded as repeated matching, these

results are consistent with Somalwar’s observations.

106

700 A
600
500
B
<400
L
]
’?“
= 3004
(o9
O] <
200 -
HCDF
100 4
HDF
0 A i 1§ ¥ 1 T T 1
0 200 400 600 800 1000

Number of transfers, m

Figure 4.2: CPU time versus number of transfers for & = 4

700
600 4
500
2
2 400
u
= 300
@]
200 A
\//HCDF
100 -
— . HDF
0 T 1 I i 1 T 1

Number of simultaneous transfers, k

Figure 4.3: CPU time versus number of simultaneous transfers possible for m

= 1000

107

In Fig. 4.2 and Fig. 4.3 the execution time of A, HDF and HCDF is
compared, as m and k are varied respectively. It can be seen that HDF
executes in at most 10% of the time required for A2 for this set of experiments.
On the other hand, HCDF may take up as much as 80% of the time required
by A2. Since both heuristics almost always produce optimal schedules, this
set of experiments indicates that HDF is to be preferred over HCDF and

A2, unless it is essential to produce optimal schedules, in which case A2

should be used.

4.4 Discussion

4.4.1 Previous related work

The literature on exact edge-coloring of bipartite graphs with unit-weight
edges was discussed in the previous chapter. To our knowledge, there has
been no previous work on analysis of approximate edge-coloring of bipartite

graphs with unit-weight edges.

The only related work that may be relevant deals with approximate edge-
coloring of general graphs and multigraphs. Holyer [70] showed that deter-
mining whether a general graph can be colored in d or d + 1 colors (the
classification problem [41]) is NP-complete. A consequence of his result was
that, unless P = NP, there does not exist an approximation algorithm for
edge coloring a general multigraph using at most (4/3 — €)D colors, for any

¢ >0, where D € {d,d + 1} is the minimum number of colors required. This

108

would seem to imply that for general multigraphs finding a provably good
approximation algorithm is difficult. However, an algorithm using no more
than (4/3)D colors, and running in time O(m(n + D)) was developed [69].
This algorithm uses an “interchange approac ” as its basis: for each edge,
check if some “simple” recoloring of the colored edges would eliminate the
need for an additional color. As the authors say, “in order to prove better

bounds, the ‘simple’ recolorings become more complicated” [69].

We note three deficiencies with this interchange heuristic. Firstly, it does not
consider the practical constraint of a limited number of simultaneous data
transfers, i.e., k < n. For our applications, this constraint corresponds to the
realistic situation of limited bus bandwidth or switching capacity being avail-
able in the system. Secondly, although this heuristic has a better performance
guarantee than those analyzed in this chapter, its time complexity is slightly
worse, unless d = n. Thirdly, since the HDF and HCDF heuristics do not
perform any backtracking or recoloring, they are likely to have smaller con-
stants for their time complexity, and are likely to be simpler to implement,

than the interchange heuristic.

To our knowledge, there has been no previous published experimental evalua-
tion of approximation algorithms for edge-coloring bipartite graphs other than
Somalwar [132]. The only unpublished results we are aware of are those by

Moret [105], which provide evidence to support some of Somalwar’s results.

109

4.4.2 Conclusions and further work

Approximate algorithms for edge coloring bipartite graphs are very attractive
from a practical standpoint, particularly if they are to be used as the basis
of scheduling algorithms that are executed very frequently in a data transfer
application. While Somalwar [132] has suggested some simple greedy heuris-
tics that seem to perform extremely well when evaluated experimentally, there
was no analysis of the time complexity or the performance guarantee for these

heuristics.

Our contribution in this chapter has been to prove the time complexity and
performance guarantees for the heuristics proposed by Somalwar. The heuris-
tics apply to the data transfer problem DTS when restricted to unit-length
transfers. We have shown that the heuristics generate schedules less than
twice the length of the optimal schedule, in the worst case, and take at most
time O((m+n)d) to execute, where n is the number of vertices, m the number

of edges and d the degree of the input graph.

Our result enables us to compare the performance of Somalwar’s heuristics
with more sophisticated “interchange” heuristics [69]. The interchange heuris-
tics are more general than those of Somalwar as they are applicable to general
graphs as well as multigraphs. They also provide a better performance guar-
antee for only a slight increase in time complexity. However, we observe that
for our applications, the Somalwar heuristics may be preferable as the appli-
cations are restricted to bipartite graphs, and the heuristics allow the case

when a limit is placed on the number of simultaneous data transfers allowed.

110

We also surmise that the interchange heuristics have larger time constants,
worse average-case execution time, and are harder to implement, than the

simple greedy heuristics of Somalwar.

For future work, we suggest two questions. The first question is to exper-
imentally and theoretically compare the interchange heuristics and Somal-
war’s greedy heuristic, and determine the range of parameters for which each
is suitable. The comparison could include theoretical average-case analysis
(e.g. [46]) as well as careful experimental evaluation. The second question is
to consider the possibility of using parallel algorithms for scheduling; these
may be especially suitable for the parallel I/O application. The results of
Karloff and Shmoys [86] provide a starting point in this direction.

Chapter 5

Scheduling in Hierarchical Architectures

We have so far discussed scheduling of data transfers in system architectures
which have a rather simple, although common, structure. The architecture
of the DTS and the SimpleDTS problems assume that there is a direct
dedicated link between every sender and every receiver; constraints arise in
the number of links that may be used simultaneously, and in the capacity of
cach sender and receiver to engage in at most one transfer at any given time.
In the context of the parallel I/O application, this architecture corresponds to
the commercially succesful and popular class of shared-bus multiprocessors,
in which processors and disks are connected by a set of parallel buses. For the
communications application, it corresponds to the case of scheduling transfers
through a single TDM switch, which can be viewed as a single multiplexer

feeding a single demultiplexer.

In this chapter we consider more complex architectures that do not assume a
direct dedicated link between every sender and every receiver. In particular,
we consider a system where the data transfers must pass through a hierar-

chically arranged set of communication paths, which form a communication

111

112

tree (see Fig. 5.1). We also generalize the architecture to allow arbitrary
capacities, drzwn from the set of positive integers, for each link in the archi-
tecture. Note that this also does away with the restriction that a sender or
receiver can eagage in at most one transfer in any given time. We call this

architecture the tree architecture.

In section 5.1 we define the tree architecture formally in our model and specify
the data transfer scheduling problem that we are interested in. In section 5.2
we show that this problem has application in three different areas: parallel
I/0, switchirz systems, and file transfer in computer networks. The tree
architecture i also of theoretical interest: we surmise that if the architecture
is made more complex than a tree, optimal preemptive scheduling of integer-

length transfers without precedence constraints cannot be done in polynomial

time.

We then develop, in section 5.3, the outline of an algorithm to optimally
solve the scheduling problem, and in section 5.4 we show how the algorithm
can be desigred to obtain a solution in time O(Cn*), where n is the number
of senders and receivers, and C is the average number of transfers a sender
or receiver czn engage in at any one time. This algorithm, which we call
the Tree scheduling algorithm, has been presented in [77, 125]. In general,
Tree is a gereralization and improvement in time complexity over previous

algorithms [24, 11, 96, 20, 136] for this class of problems.

We have implemented the Tree algorithm. In section 5.5 we report the results

of an experimental evaluation of the behavior of the algorithm for random

113

input instances. Finally, in section 5.6 we discuss previous related work, and

end with some conclusions.

5.1 Definition of the problem

We define the generalized data transfer scheduling problem TreeDTS, which
differs from DTS in allowing tree-structured interconnection networks of the

type shown in Fig. 5.1. The interconnection network is defined formally as

AG below.

TreeDTS = (PG, AG, RG, f, Preempt)

where Preempt = true, f is makespan, and, PG, AG, and RG are defined

as follows.

PG = (T, Ep, Lp) with |T| = m, Ep = {}, and Lp(t) 2 0 for all t € T are the
task lengths.

AG = (R, Ea, La) and (see Fig. 5.1) RT = {SUSER, RUSER, MUX, DMUX,
NULL}; |R| = n + n' + 1, n is the number of resources of type SUSER or
RUSER, n' is the number of type MUX and DMUX, and there is one
resource of type NULL. Ea is a directed tree whose root is the resource of
type NULL. The root has a left subtree M T called the multiplexer subtree
with interior nodes of type MUX, leaves of type SUSER, and arcs directed
towards the root. (The definition of the right subtree DT follows by analogy).

114

Dummy node. Type NULL

Root of Multiplexer

Root of Demultiplexer
Subtree, MT

@ Tree, DT

, N Demultiplexer
Multiplexer nodes, type
nodes, type DMUX
MUX

Sending Users, Receiving Users,
type SUSER type RUSER

Figure 5.1: Model of a tree-structured architecture

Now La(r) = 0 if » € R, and La(e) is the capacity of arcs e (in packets per
second) for e € Ea. We assume all interior vertices have degree at least 3 so
as to avoid degenerate trees. We also assume that for vertices in MT the
sum of La(e) for incoming arcs e is at least the value of La(e') for the single
outgoing arc ¢’. There is an analogous assumption for DT', while for the root

the capacity of the incoming arc equals that of the outgoing arc.

RG = (R, Er, Lr) is a bipartite graph, where E7 is a set of arcs from vertices
of type SUSER (senders) to those of type RUSER (receivers) representing
the data transfer operations to be scheduled, and L7 is a bijection from Er to
T. Note that since there is a unique path betwen each sender-receiver pair,
only the assignment of tasks to senders and receivers is shown in RG, the

assignment of other resource types being left implicit.

115

5.2 Three Practical Applications

By casting the extended data transfer scheduling problem in our model, we see
that it is a generalization of problems studied for three applications: parallel
1/0, satellite switching, and network file transfers [80, 81]. Thus the results
we derive in this chapter are available to all three applications. We describe

these applications below.

Application 1: Parallel 1/0 in multiprocessor systems

In this chapter we consider cases of the 1/0 scheduling problem in which we
do not assume a direct dedicated link from every processor to every memory.
In addition, a processor or memory is not limited to engaging in at most
one transfer at any given time. This problem is applicable to I/O schedul-
ing in a variety of tree-structured parallel computer architectures, as well as

interconnection networks such as KYKLOS [102].

Parallel database machines have been built that have tree-structured architec-
tures, such as the VLSI tree machine of Song [133] and the relational database
machine REPT [127]. The VLSI tree machine consists of two mirrpred bi-
nary trees connecting a common set of leaves. The root of the top (called
“circle”) tree receives data and commands from the external host and broad-
casts them down to the leaves (“square nodes”). The leaves perform the data
manipulations in parallel and deliver results via the bottom (“triangle”) tree.
The interior nodes of the bottom tree combine results from the leaves before

transferring them to the external host via the root of the bottom tree.

116

Concentrated Concentrated
"~ | MUX | TDM Lines TDMLines | DMUX|
%ending . DM Receiving
sers .
Switch) Users
: MUX DMUX

Figure 5.2: SS/TDMA hierarchical switching system

Application 2: Hierarchical switching systems

Hierarchical time division multiplexed (TDM) switching systems have been
proposed [39] that connect sending users via a bank of multiplexers, followed
by a TDM switch, followed by a bank of demultiplexers to receiving users, as
in Fig. 5.2. Hence, the switch has three stages. Advantages of the hierarchical
structure are that fewer switches may be needed to serve the user population;
trunking efficiency may be increased due to the fact that end users have access
to multiple input links; and modular growth is possible if additional lines and

multiplexers/demultiplexers are required.

The hierarchical switching systems we consider in the remainder of this paper
have an arbitrary number of stages, but are required to conform to a tree

topology. A special case of our switching systems includes the one in Fig. 5.2

Oo0—> —>0
>0
O—> =

Send;

Uesréién g Receiving
o Users
o—N > L
O
O —>0

—>0
Multiplexer Tree Switch Demultiplexer Tree

Figure 5.3: Hierarchical switching system

but where the middle n x n switch can transport at most £ < n packets per

slot.

Note that the central TDM switch can also be regarded as a multiplexer
feediing a demultiplexer. Thus the switching system can be regarded as being
composed of only two elements, as shown in Fig. 5.3. We will use this model

for the system architecture in the rest of this chapter.

Application 3: File transfers in computer networks

Consider a communications network where each node has several ports that
can simultaneously transfer files, file transmission can be preempted, and the
maximum number of simultaneous transfers at any time in the network is

fixed. Each user is connected to a single network node and assigned a unique

118

port on that node for file transfers. Such a network can be modeled as a
hierarchical switching system, or a specialized tree-structured architecture (a

special case of the architecture shown in Fig. 5.1).

5.3 The Tree scheduling algorithm

In order to develop an algorithm for solving TreeDTS optimally, we first
introduce some notation and some definitions. We then introduce the notion

of critical transfers and develop the outline of an algorithm.

5.3.1 Basic definitions and notation

The sets of senders and receivers are denoted Vs and Vp, and the sets of
multiplexers and demultiplexers are denoted Viy and Vp. The architecture
graph is sometimes called a system graph in this section, and is shown in
Fig. 5.4. It is denoted (V, E) where V = Vs UV U Vp UVg and the directed
links E are as follows. The set E = Ep U Ep U{[zm,zD]}, where znm € Vur,
Tp € ‘VD, (Vs U Vi, Ear) denotes the multiplexer tree with root node I,
and (Vg U Vp, Ep) denotes the demultiplexer tree with root node zp. In
addition, the links of (Vs U Vi, Ep) are directed towards zp, and the links
of (Vg U Vp, Ep) are directed away from zp. Note that a multiplexer node
v € Vi (resp., demultiplexer node v € Vp) is one with a single outgoing
(resp., incoming) link and at least two incoming (resp., outgoing) links. Let

n = |Vs| +|Vrl-

119

2

M Xp

St

Vs (Vi Em) (Vp,Ep) Vg
Figure 5.4: Switching system graph (V, E)

For each link e € E, the positive integer c(e) is the number of transfers
that can be carried on simultaneously over that link; in terms of the satellite
switching application, it is the number of packets that can be delivered over
the link in one time slot. For each node v € V, let I{v) and O(v) be the sets of
incoming and outgoing links of v, respectively. We assume for a multiplexer
node v € Vir, Yeerw) €(€) 2 Leeow cle); and for a demultiplexer node v €
VD, Yeerw) €(€) £ Ceeoqw) cle). For a user node v € Vs U Vg, let C(v) be the

capacity c(e) of the single link e incident to v.

Note that |V]| < 2n, since (Vs U Vi, Ear) and (Ve U Vp, Ep) are trees and
each node in Vj; (vesp., Vp) has at least two incoming (resp., outgoing links)

links.

We now introduce some specializations of the definitions given in Chapter 2,

120

in order to simplify the discussion of the solution to TreeDTS. Let Esp =
{{u,v] : u € Vs,v € Vr}. We call any nonnegative integer matrix r = (r(e):
e € Esg) a traffic matriz. The interpretation of r([u,v]) is the number of
packets to be transferred through the system from user u to user v; in effect
it captures the resource graph of the problem. If ris a traffic matrix then let
t, = (t,(e) : € € E), where t.(e) is the number of packets to be transferred
over link e with respect to r. More formally, ¢, satisfies the following: if e
is the outgoing (resp., incoming) link of node v € Vs (resp., v € Vg) then
t,(e) = Tyevy r([vs ul) (resp., Luevs r([u,v])); and for all nodes v € VarU Vb,
Yeclw) tr(€) = Leeo() t.(e). Clearly, t, can be calculated from r in O(n?)

time.

A traffic matrix r is called a feasible transfer if for all e € E, t.(e) < c(e).
A schedule is a sequence s = (di,ri 11 = 1,...,m), where d; > 0 is integer,
and r; is a feasible transfer. The length of the schedule is 3", d;, the scalar
d; is called a duration, and m is called the switching complezity. A schedule

s=(di,r;:1=1,..,m) is said to satisfy a traffic matrix v if 30 diry = 7.

Note that a lower bound to the minimum length is L(r) = maXccE (%'(%l] . In
section 5.3.2, we provide the outline of an algorithm that finds a schedule
of length L(r) that satisSes 7. Thus, the schedule has minimum length. In
section 5.4, a time complexity analysis of a fast design for this algorithm is

given.

For the rest of this chapter we will use the following notation. Suppose
f=(f(z):z€X),g=19(z):z€ X), and X is some set. Then f < (zesp.,
=,>) g is interpreted as f(z) < (resp., =,>) g(z) for all z € X.

121

5.3.2 The scheduling algorithm

In this section we first define a critical transfer. Informally, for any time slot,
a critical transfer is the minimum transfer required to ensure that the lower
bound of the schedule length decreases by one unit; a sequence of critical
transfers will thus result in an optimum schedule. In the first two lemmas we
show the condition a transfer must satisfy in order to be a critical transfer. In
the third lemma we show that a critical transfer exists for our system, leading

to an algorithm for solving TreeDT'S.

Def. A feasible transfer g is called critical with respect to a traffic matrix h

ifg<hand L(h—g)=L(h)—1.

We also define by, = (by(e) : e € E) to be a function of traffic matrix h such
that by(e) = max{0,tx(e) — (L(k) — 1)c(e)}.

Lemma 5.1 Suppose h is a traffic matriz, g is a feasible transfer, and d > 0
is an integer such that h > dg. Then L(h — dg) = L(h) — d if and only if
L(h —dg) < L(h) — d.

Proof. Since g is a feasible transfer, ¢;(e) — dt,(e) > t4(e) — dc(e). Therefore,

L(h — dg) = max,¢p[2ELFe)]

> maxeeg[%—((g] —d
= L(h) —d.

122

Since L(h — dg) > L(h) — d, the lemma is implied. O

Lemma 5.2 Suppose h is a traffic matriz. A feasible transferg < h is critical

with respect to h if and only if t; > by.

Proof. By definition, g is critical if and only if L(h —g) = L(h) — 1. From
Lemma 5.1, we know L(h —g) = L(h) — 1 if and only if L(h—g) < L(h)-—-1.
The last inequality is equivalent to ?-'z-(d)-) < L(h) — 1 for all e € E, because
L(h) -1 is integer valued. Next note that =2 < L(h) — 1 is equivalent to
t,(e) > tn(e) —(L(h) —1)c(e). Therefore, g is critical with respect to h if and
only if for all e € E, t,(e) > tu(e) —(L(k) — 1)c{e). The lemma is implied

since t,(e) >0 for all e € E.]

For the next lemma, and the remainder of this section, we consider another
network (V, E*) (see Fig. 5.5), where the nodes are V, the directed links are
E* = EU Egs, and Ers = {[u,v] : u € Vg,v € Vs}. (Notice that the links in
Egs are oriented from receiver nodes to sender nodes.) A nonnegative vector
f=(f(e): e € E) is called a flow. For each v € V, let I*(v) and O*(v) be
the set of incoming and outgoing links, respectively, for the node v. A flow f

is node-conserved if for all v € V, Yeerr(v) F(€) = Lecor(v) f(e).

Def. For any traffic matrix h, let the network link lower bound b} = (br(e) -

e € E*) and network link capacity ¢, = (cj(e) : e € E7), such that

f(e) = {bh(e), if e € E;
h - 0, if e € Egs.

123

c‘(e) - {C(e)» if e € F;
M = U min{h([v,u]),C(u), (1 v)}, if [u,v] =€ € Ers.

Note that 4} and ¢} are integ=r and ¢, > b;. Also, for the special case in
[24] when “speed-up” is not zlowed, we would replace h([v,u]) by 1 in the
definition of ¢} above; this chzzge leads to minor modifications in the proofs

below which are left to the rezder.

Lemma 5.3 For any traffic natriz h such that L(h) > 1, there is a critical

feasible transfer g.

Proof. The proof has three seps. We define a flow f and observe that it
is node-conserved, show that 77 < f < ¢}, and then use the corresponding
integer-valued flow to define ¢ traffic matrix. Let f be a flow such that

, if [u,v] = e € ERgs;
- ifee E.

Then f is node conserved. Nzxt we show that b; < f < ¢j. Suppose € =
[u,v] € Egs. Let ¢’ and €” be the outgoing link of v and the' incoming link of u,
respectively. (Notice that her: we use the property that leaves of a tree have
only one parent). Then L(h) > max{i((f,)l, —C(i;;)l, 1} > ma,x{hc’z‘; , JC%D, 1}

and

bi(e) = 0 < f(e) = M2l

< min{C(w), C(v),h([v.+ i} < ci(e)-

P

124

Algorithm Tree.

Input: Traffic matrix r.

Output: Schedule s = (di,r; 11 =1,...,m)
that satisfies r.

Tetm=0andr' =r.
while v’ # 0 do
Let m=m+ 1.
Note that ' = r — 727" dirs.
Compute a critical feasible transfer
rm of 7.
Let d,, > 0 be the maximum value d such
that v’ > dr,, and
L(r' —dry) = L(r') — d.
v =7 —drp,
=nd

Table 5.1: The Tree algorithm

tuppose e € E. Then f(e) = %% < Q%l(%ﬂ = c}(e). Also, note that %é?))
<L) ta(e) < L()e(©); tale)(1 — L(R) = —(L(R) = DL(Rie(e): ta(e)
> ti(e)L(h) —(L(h) — 1)L(h)c(e); and %(% > ta(e) —(L(h) — 1)e(e). Thus,

“Ie} > by(e). We are done verifying b; < f < cj.

Trom the Integrality Theorem for Flows (see [122]) we know that since there is
: node-conserved flow f such that bf < f < ¢f, then thereis a node-conserved
ateger-valued flow f' such that b} < f' < c;. Let g be a traffic matrix such
aat g([u,v)) = f'([v,u]). Then ty(e) = f'(e) for all e € E. Note that ¢ is
. feasible transfer because t,(e) = f'(e) < c(e); and g < h because g [u,v])

= f([v,u]) < h([u,v]). Finally, g is critical since f’ > b} and Lemma 52. O

Def. Let Rj=r — ;‘:}1 d;r;.

Theorem 5.1 Algorithm Tree solves TreeDTS.

125

Proof. Lemma 5.3 implies that a critical feasible transfer r; can always be
found for a traffic matrix R;. Also, the value d; is greater than zero, because
r; is a critical feasible transfer for R;. Therefore, the sequence R;, Ra,...
is decreasing in value and the algorithm will eventually terminate with the
schedule s. Since S, d; = Y7 [L(R;) — L(Riy1)], the length of s is L(r)
and is optimal. O

For the rest of the section we discuss the computation of d;, which is the
maximum value d such that R; > dr; and L(R; — dr;) = L(R;) — d. The
inequality R; > dr; is equivalent to d < mlneEE!_ » (e)J From Lemma 5.1,

L(R;—dr;) = L(R;)—d is equivalent to [M] < L(R;) —dforalle € E.

tr.(e)~dtr, (e)

Since L(R;) — d is integer, the last inequality is equivalent to ©

< L(R;) — d, which in turn is equivalent to

d< ﬂRini(e)

_ { LB it ole) > tnle)

0, otherwise.

=S~ 4 1e(e)—tr. (e
_ { L) EC‘(’:}}_ii((e)) t;), if C(e) > tr,’(e);

00, otherwise.

Therefore, d; = min{min.eg Br; r(€), MiNecEsn L tr; ((:))J }-

5.4 A time efficient design

In this section we discuss time efficient implementations of Algorithm Tree

and the time complexity. First we prove a bound on the sum of the link

126

(NRa AR) ARS (NS’ AS)

Figure 5.5: Network model G = (V, E~)

capacities in the network (V*, E*), and a bound on the switching complexity
m of Algorithm Tree. These bounds are used in the calculation of the time

complexity of our implementation of Algorithm Tree.

Lemma 5.4 Let C =25 vy, C(v) and ¢ = (c(e) 1 € € E7) such that

cle) = {c(e), feeL;
min{C(v),C(v)}, ife=[u,v] € Egs.

Then S ecp- c*(e) is O(n*C).

Proof. We know Yecine €(€) € Ypunjeras C(u) + C0)] < n3veviuvs C(v)
= n2C. Now consider the directed spanning tree (V' U {zp}, E), where 1’
— Vs U Viyand E' = Epr U {[zar,2p]}. Let ¢ = (c(e) : e € E'), where c(e) =

C(v)if v € Vs and e is the outgoing link of v, and if v € Vir then 3= ¢y, ¢'(€)

127

= Yeco(w) €'(€)- Since X eer(v) c(e) > Teeow) cle) for each v € Vu, it follows
1hat ¢ > ¢*. Let p, be the length of the path in (V',E") from node v € V'
10 node zp. Then Teep €*(€) < Teer €'(€) = Lvevs p.C(v). Due to the fact
hat each node v € Vi has at least two incoming links and (V/, E') is a tree,
we know p, < |Vs| for any u € V'. Therefore, 3 ccer c*(e) < |Vs| Toevs C(v)
< n Y evs C(v). Similarly,
S e<n Y C).
e€EpU{fear,zpl} vEVR

Thus, Teer c*(€) < nTvevsuva C(v) and we are done. a

Lemma 5.5 Suppose h is a traffic matric such that L(h) > 1. Let f be an
integer, node-conserved flow and g be the traffic matriz such that g([u,v]) =

#([v,u)). Then g is a critical feasible transfer for k if and only if b, < f < ¢j.

Proof. Note that for e € E, f(e) = ty(e). Next, note that f < ¢ if and only
** both g is a feasible transfer and g < h. Hence, Lemma 5.2 implies that g is

= critical feasible transfer for h if and only if b; < f < ¢;. 3

Let f; be the node-conserved flow such that

riv,u]), if [u,v] € ERs;
fillu,v]) = {t((([ug])) if %uv{ € EI.%S

Lemma 5.6 The switching complezity m of Algorithm Tree is o(n*C).

Proof. Let the residual traffic at iteration i after a transfer r; of duration d

~ime slots be r? = R; — dr;. From Lemma 5.5, r; is a critical feasible transfer

128
for ¢ if and only if 8% < fi < ¢ja. Then
d; =1+ max{d>0:b% < f; < ca}.

Therefore, for each 1 < m, at least one of the two inequalities must hold:

R 7 VR, OF CR # ch,,,- i-e., either the lower bound or the upper bound of
the flow changes.

Next note that cp, 2 ¢, for i < m, because R; > Ri}. Since Ry =

R, — d;r;,if e € E then

fopa(€) = max{0,tr,; (€) — (L(Ris1) — 1)e(e)}

= max{0, tr,(€) — ditr,(¢) — (L(R:) — di = 1)c(e)}

= max{0, tr,(€) — (L(R:) — e(e) +(c(e) — tr.(e))di}

> by (e)-

If e € Egs then by, () = 0 = by (e).

bk.,, OF Ck, # Chy, Lhis implies m < m + Y.epe (Vg (€) + k... (€)) <
Yeer~ (bh,.,, (€) + R, (€)), which is O(n*C) from Lemma 5.4. W

Thus, bk, < bk, < o < brops €Ry 2 R, 2 o > Ch,0 and b, #

Theorem 5.2 Algorithm Tree can be designed so that it has a time comp-

lezity O(n*C).

129

Proof. Each iteration 7 of Algorithm Tree requires computing r;, d;, and
updating r’. The implementation of the algorithm we consider will compute
ri by constructing an integer, node-conserved flow f; such that b3, < f; < cjg,.
By Lemma 5.5, the traffic matrix r;, where r;([u,v]) = fi([v, u]), is a critical

feasible transfer for R;.

To construct f;;; we consider an implementation that uses f;, where fo = (0 :

e € E*). Let f{,, be a flow, that may not be node-conserving, such that

i+1(e) = min{cg,,, (¢), max{fi(e), by,,, (€)}}.

Thus, by,,, < fiy1 < ck,,- For each node v, let the surplus flow 8i41(v)
= Peel*(v) fi’_H(e) — Yecor(v) fiy1(€)- Let fi}, be aflow such that fii, = fi,,.
The flow f/; can be modified by the Feasible Distribution Algorithmin Rock-
afellar {122] so that fi\; becomes integer, node-conserved, and by, | < fii; <
Chiyi- Then fiyr = fli;. The Feasible Distribution Algorithm Wﬂl modify f
by applying at most 1 3 ,cv |6i1(v)| integer flow augmentations, similar to
flow augmentations of the Ford-Fulkerson Labeling Algorithm [42]. Each flow
augmentation will take O(n?) time. Therefore, the transformation of f7,, will

take O(} Tpev 6i41(v)|n?) time. Thus, the time to compute fl,fg,...,fm is
O(Dn?), where D = 321 Tpev [6:(v)].

Since [8i41(v)] < Teerewyuorw) [fiz1(e) — file)l,

we have

D <TG Toev Teerr (wyuor(v) 1 fiva(e) — fi(e)]

130

< Zﬁ—ﬁl 2 cepe [flpa(e) — fi(e)]
= 2T cen Lo’ [flsale) = file)l:

Note that, informally, either f/,,(e) is increased as the lower bound increases

to bg,,, (), or is decreased as the upper bound decreases, i.e.,

[Fin(e) = Fi(e)|
— max{bi,, (¢) — fi(€),0}
4 max{fi(e) — e, (€), 0}

-—<— bﬁ;{;.*.} (e) - b;?,‘ (e) + C;%,‘(e) - C}%“.}.l (e)'

Therefore, D < Y.cg- ¢*(€), and applying Lemma 5.4, D is O(n?C). This
implies that the time it takes to coﬁpute f1s f2, ey fmg1 18 O(n*C).

For each iteration ¢ of Algorithm Tree, the time to compute d;, by, and cg,
and to update r' is O(n?). By Lemma 5.6, the number of iterations is O(n?C).
We can conclude that the time complexity of the algorithm is O(n*C). D

5.5 Experimental evaluation

In this section we describe the results of an experimental evaluation of the
performance of the Tree algorithm. since the algorithm always produces an
optimal schedule, the key question is the time that it takes to produce that

schedule.

131

We implemented the Tree algorithm as a C program, generally along the lines
we have discussed in this chapter. The main difficulty was in implementing
the routines to find augmenting paths to modify a flow so as to make it
node-conserved. The shortest augmenting path subroutines were implemen-

ted using the algorithms sketched in Gibbons [58] as a guide.

The program implementing Tree was evaluated by measuring the CPU time
it took to execute when presented with uniformly randomly generated graphs
as inputs. Randorm graphs were generated for selected combinations of the in-
put parameters using a pseudo-random number generator [94]. The programs
were executed on a Sun Sparc 2 workstation running the SunOS™ Release
4.1.1 operating system after being compiled using the Sun Microsystems C
compiler (bundled with SunOS Release 4.1.1), with Level 4 optimization en-
abled (“-O4” option). The data structures for the program fit in the 32 MB
main memory of the system, and so the program does not perform any 1/0

in order to execute, except to read the input graph and print results.

Tree expt. 1. Effect of varying number of senders. The first experiment
estimated the performance of Tree for architecture graphs in which both
the multiplexer tree and the demultiplexer tree are complete balanced binary
trees with unit capacities for all links, and all edges in the resource graph have
unit weights. Thus the average capacity of the user links in the architecture
graph is C = 1, the number of senders and receivers is the same, and if there
are S senders there are (S — 1) multiplexers, each with two incoming links
and one outgoing link. Clearly S is constrained to be a power of 2, and once
it is chosen the structure of the architecture graph, and the number of nodes

in the resource graph, is completely fixed.

132

The =+ random variable remaining in the architecture graph is the capacity
of i =k from the root of the multiplexer tree to the root of the demultiplexer
tree. Tme capacity of this link is set to be an integer drawn randomly from
the merval [2,5/2]. The edges of the resource graph (i.e., the entries of the

trafic matrix) were generated by a pseudo-random number generator [94].

Faci =ge exists with probability 0.5; if it exists, it carries unit traffic.

For = value of S, one hundred random input instances, or batches, were
geneaiad as described above, and the CPU time taken by Tree to generate
a sciecule for the entire one hundred batches, as reported by the C Shell
“1ine” command, was recorded. The “time” command used has a resolution
of 2(=s. Since all (except one) of the measurements are of times greater than
4 seormds, and many are of times of hundreds of seconds, this resolution is
sFiemt. The mean for each set of 100 measurements was calculated, plotted

anc —ve-fitted as described in section 3.7.

Iz Fz. 5.6 the mean CPU time per batch taken by Tree as the number of
sencers (or receivers) S is increased, is shown. The curve-fit shown in the

f zue corresponds to the following equation and correlation coefficients:

Trein)=2.78 x 1075 n® — 9.26 x 107* n? — 055,

R3? = .99, R2? = .98, R1% = .89, R0?* = 1.0

For -== sake of completeness, some data on ‘internal’ measures of perfor-

—arce of Tree are summarized in Table 5.2. These are the average number

133

60.00

50.00

30.00 -

CPU Time (see)

20.00 -

10.00

0.00 - : ‘ : : ‘ : :
0 8 16 24 32 an 43 56 64

S, Number of senders and receivers

Figure 5.6: CPU time versus number of senders or receivers for unit-length
transfers and complete binary tree architectures

of unit-length transfers to be scheduled per batch, the average optimal sched-
ule length per batch in time slots, the average number of augmenting paths

calculated in order to find the optimal schedule, and the average CPU time

per batch.

Tree expt. 2. Effect of varying transfer lengths. In the second experiment,
the architecture graph of the input instances to Tree is kept fixed and only
the lengths of transfers are varied. The architecture graph is fixed to be a
balanced binary tree with 64 senders and unit capacity links. Each edge in
the resource graph exists with probability 0.5; it is labeled with the length
of the transfer by a random number drawn from the interval [1, K], where
K is the maximum transfer length and is varied from 2 to 1024. For each
value of I, one hundred batches are generated randomly as described above,

and the time for calculating the optimal schedule for the entire one hundred

Senders, S | Transfers Makespan Paths CPU Time
(sec)

8 7.99 5.0 7.46 014

16 31.28 1777 29.96 .050

32 127.94 68.34 123.97 365

64 515.09 266.61 501.27 4.362

134

Table 5.2: Behavior of Tree as number of senders is varied for balanced binary
trees of unit capacities and unit-length transfers

Maximum | Transfers Trafic ~ Make- Switchings Paths CPU
Transfer span Time
Length, K (sec)
1 515.09 515.09 266.61 266.61 501.27 4.362

2 515.09 771.88 401.76 348.69 505.78 5.242

16 515.09 4377.62 2290.63 486.37 513.54 6.709

128 515.09 33217 17402 511.35 514.86 6.982

512 515.00 132092 69207 514.21 515.06 6.999

1024 515.09 263929 138282 514.53 515.06 7.017

Table 5.3: Behavior of Tree as maximum transfer length is varied for balanced

binary trees of unit capacities and 64 senders

batches is measured using the “time” command, as for Tree expt. 1. Figure
g g

5.7 shows the mean CPU time taken to calculate the schedule, per batch, as

K is varied.

Table 5.3 shows ‘internal’ measures of the behavior of Tree as K is varied,

averaged per batch. Since transfers are no longer of unit length, the total

traffic per batch does not equal the number of transfers (unlike Table 5.2), and

the makespan does not equal the switching complexity. Thus these quantities

are displayed separately.

Tree expt. 3. Effect of varying link capacities. In the third experiment,

CPU Time (sec)
o
1

¥ S D T
0 128 256 384 512 640 768 896 1024
Maximum transfer length, K

Figure 5.7: CPU time versus maximum transfer length for complete binary
tree architectures with 64 senders

balanced binary trees were again considered, but the capacity of the user
links, C, was varied as described below. The maximum transfer length was

set at N = 2.

Recall that the architecture graph for TreeDT'S contains sending users con-
nected to a bank of multiplexers. In order to keep the structure of the graph
‘sensible’; it was assumed that the sum of the incoming link capacities to a
multiplexer is at least equal to the outgoing link capacity (and the analogous
assumption for demultiplexers). When C' =1, and the tree 1s not degenerate
(i.e., the branching factor is at least two), this assumption is easily captured
by generating input architecture graphs in which all links have unit capacity.
For C > 1, we capture this assumption by setting the capacity of all user
links to exactly C'. The capacity of non-user links in the architecture graph is

then generated as an integer drawn randomly from the interval [1, C'], where

136

y oy

CPU Time (sec)

O~y T T L SRR SRR
0 16 32 48 64 80 96 112 128

Capacity of links to users, C
Figure 5.8: CPU time versus user link capacity for complete binary tree
architectures with 64 senders

(" is the sum of the incomping links to a multiplexer (or outgoing links at a

demultiplexer).

Figure 5.8 shows the mean CPU time per batch for generating an optimal
schedule using Tree for 100 batches of randomly generated inputs as C' is

varied from 1 to 128. The curve is described by:

Tree(C) = 5.64C701°, R* = .98

The internal performance measures of the algorithm are summarized in Table

5.4.

It is interesting to note that the execution time of the algorithm decreases

as C is increased, if the architecture and resource graph (traffic) inputs are

137

User Link | Transfers Traffic Make- Switchings Paths CPU
Capacity, C span ' Time
(sec)

1 515.09 515.09 266.61 266.61 501.27 4.362

2 515.09 771.88 383.23 335.20 505.88 5.172

4 515.09 771.88 337.21 205.48 506.24 4.729

8 515.09 771.88 284.32 249.04 512.69 4.181

32 515.09 771.88 172.73 151.0 541.20 3.251

128 515.09 771.88 78.56 73.42 573.88 2.498

Table 5.4: Behavior of Tree as user link capacity is varied for balanced binary
rees of 64 senders

kept the same. Informally, the explanation for this is straightforward: as C is
increased, more traffic can be transferred per time slot, so that the switching
complexity (number of feasible transfers that need to be calculated) decreases.
The multiplicative factor of C in the theoretical asymptotic time complexity
arises from assuming that in the worst case, at each time slot, the capacity
or lower bound of any link changes by at most one unit; then the number
of times that feasible transfers have to be calculated is proportional to the
maximum difference between capacity and lower bound for any link, which in
turn is proportional to C. In order to bring the theoretical and experimental
results in closer intuitive agreement, another method should be used to bound
the switching complexity of the algorithm, i.e., the theoretical analysis should

be sharpened.

138

5.6 Discussion
5.6.1 Previous related work

The previous work for scheduling data transfers in tree architectures has all
been done for special cases of the TreeDT'S problem. In addition, it has all
been done in the context of specific application domains. The result is that
the previous research has been reported in a wide variety of journals and con-
ferences, using specialized notation and jargon, and with no cross-referencing
of research across application areas. In the following we summarize some of

this research using our scheduling model.

The ground-breaking work on data transfer scheduling was done by Coff-
man, Garey, Johnson and LaPaugh, in their 1985 paper which focused on
the problem of non-preemptive file transfers in a distributed network [27].
The problem they address differs from TreeDTS in that Preempt = false,
and general architecture graphs were considered. The paper is remarkable
in defining a new and interesting class of problems and presenting a large
number of results, including NP-completeness of various classes of problems,
approximation algorithms for these problems with performance guarantees,
polynomial-time algorithms for special cases, and distributed algorithms for
some situations. The suggestions for future work mention the realistic situa-
tion of file transfers where intermediate network nodes may be used to forward
files if the sender and receiver have no direct link. These and other variations
of the problems mentioned in the paper have subsequently been addressed
by several researchers (e.g., see [23, 142, 101] and references therein), and

continue to receive attention.

139

Our work differs from that of Coffman et al [27] and their successors in that
we are considering the situation where preemption is allowed. This assump-
tion not only makes the scheduling problem easier, but is well-justified for
many applications. For instance, in the case of parallel 1/0, data is typically
read in fixed-size blocks from magnetic media, allowing preemption between
block boundaries. Similarly, in the case of satellite TDMA switching, data
is transferred in fixed-size packets in order to time-share the medium using
time-division multiplexing, and communications protocols often assume pack-
etization of data in order to operate correctly. In the rest of this section, we

consider preemptive scheduling only.

Eng and Acamopra [39] consider a special case of TreeDTS for the satellite
switching application. They place the following additional restrictions on the

architecture graph:

1. The hierarchical switching system has three stages, i.e., AG is a tree
with exactly four levels (a dummy root, and two subtrees of three levels
each), and

9. arcs connected to leaves (users) have a capacity of exactly 1 packet per

second, i.e., C = 1.

Eng and Acampora [39] provide necessary and sufficient conditions for the
existence of an optimal schedule. Bonnucelli [11] and Liew [96] provide exact
optimal scheduling algorithms of time complexity O(n®) under these condi-
tions. Informally, the basic approach is, at every time slot, to identify critical

transfers - those whose remaining traffic demand equals the optimal makespan

140

calculatec using Eng and Acampora’s conditions. At every time slot as many
packets as possible from these critical transfers are transferred - the num-
ber that can be sent is calculated using a max-flow algorithm. The resulting
schedule #ill have the optimal makespan. We note that our algorithm will

solve this restricted problem in time O(n?).

Choi anc Hakimi [24] study a special case of TreeDTS for the file transfer

applicatim. They place the following constraints on the architecture graph:

1. AGis a tree with exactly three levels, and

2. a) rcs of AG connected to leaves (users) have an arbitrary positive
integer capacity equal to the number of ports, (this case is called speed-
up . or
b) wcs of AG connected to leaves (users) have capacity exactly 1 and

(tks case is called no speed-up)

In additi:n, preemption is allowed arbitrarily, i.e., packets may be of variable
length. We shall show in a later chapter that this extension can be handled

by a simzle modification of TreeDTS.

Choi an¢ Hakimi’s problem generalizes that of Bonnucelli [11] and Liew [96]
in allowng non-unit capacities and allowing variable-length packets, but is
restrictes in allowing only three levels in the AG. The term speed-up implies
that musiple ports may be used to expedite the data transfer between a given
sender-rzceiver pair. Thus allowing a vertex v to engage in upto a(v) transfers

means t:at a transfer of length w between vertices u and v only requires time

w/(min 2(u), «(v)))-

141

Choi and Hakimi’s method is interesting because it illustrates an alternative
approach to the problem. Tiey essentially use a generalized edge-coloring
method in order to obtain optimal schedules. Their problem is a general-
ization of the SimpleDTS and DTS problems that we have solved using
standard edge-colorings of bipartite graphs, but is a restriction of T reeDTS,
for which we used more powerful network flow methods. Further, they handle
the case where at most k < n transfers may take place at any given time by
using a procedure similar to the k-filling procedure we use for DTS. Thus
not only their problem, but tieir solution method falls at a point in between
the approaches that we have taken to solve the DT'S and TreeDTS data

transfer scheduling problems.

Under speed-up, Choi and Hakimi’s algorithm runs in time O(Csumm?), where
Clyum is the sum of the link capacities at the user nodes and m is the number of
data transfers, i.e., it runs in time O(Cn®). Without speed-up the algorithm
2 m), ie., O(Cn® 4+ C?n?).

runs in time O(Cyymm? + C7,

In the same paper, Choi and Hakimi [24] also consider the situation where a
non-zero switching time is required in order to change from one switch con-
figuration to another. They show that even a simple version of this problem

is NP-complete, and design zpproximation algorithms.

Our formulation of the protlem allows modeling of speed-up since all arcs
connected to leaves have capacities equal to the number of ports. For the
case without speed-up we mcdify the network model so that arcs representing

the data transfers themselves {arcs from receiving users to sending users)

142

have capacity 1. In either case our algorithm generalizes and provides a
faster algorithm for the problem than the optimal algorithms of Choi and
Hakimi [24], provided that preemption is allowed only at fixed packet length
boundaries. As already mentioned, in a later chapter we will show that even
for the latter case, the Tree optimal algorithm can be extended to generalize

and have better time complexity than Choi and Hakimi’s optimal algorithms.

The data transfer problem has continued to receive attention for the satellite
switching system application. Chalasani and Varma [20] present an algorithm
for the restricted system studied by Eng and Acampora (39, 11, 96] that takes
time O(n? min(L, n?) min(k,n"*)), where L is the schedule length and k is the
capacity of the central switch in the three-stage network. Thus their algorithm

takes time O(n*?).

Chalasani and Varma [136] have also presented an algorithm whose basic idea
is similar in spirit to the approach we have used to design Tree: instead of
recalculating flows from scratch at each step of the algorithm, calculate only
a modification to the flow. However, their algorithm again only applies to
the three-stage unit-capacity network specified by Eng and Acampora [39],
and runs in time O(n? + ¢n), where ¢ is the number of traffic units to be
reassigned in the traffic matrix, i.e., it runs in time O(Ln*), where L is the
schedule length. There are two interesting points in their approach, however.
The first is that they use a procedure similar to k-filling to convert the pr-
oblem for a three-stage hierarchical architecture to that for a single switch
(the architecture graph of DT'S). The second is that they use an algori-
thm originally developed for routing traffic in a switching network to perform

scheduling.

143

It is clear that e Tree algérithm solves more general cases of the optimal
data transfer scn=tulin g problem than those considered in (39, 11, 96, 20, 136].
It also solves mce general cases of the problem than the polynomial-time
solvable problem studied in [24]. In general, for arbitrary traffic matrices
(and hence schemle lengths that may be greater than O(n?)), Tree also
performs better lan previous algorithms [39, 24, 11, 96, 20, 136].

5.6.2 Conclusons and Further Work

We have defin=c -1e problem of data transfer scheduling in tree-structured ar-
chitectures in o model, and shown that it generalizes previous work done in
three different amlicazion areas: parallel I/O [132], satellite switching systems
[39, 11, 96], and ile transfers in computer networks [24]. The generalization
comes in two forns: in allowing arbitrary tree topologies in the architecture,
and in allowing zbitrary integer capacities for the communications links. We
have developed m algorithm whose time complexity is O(Cn*), where C is
the average capaity of the links connected to senders and receivers, and n is
the number of saders and receivers. In general, this algorithm is faster than

previous algoritmms [24, 11, 96, 20, 136].

Our study has z:0 be=n unique in that we have actually implemented the sch-
eduling algoriitm and investigated its behavior experimentally. For the case
C = 1, unit tranver lengths, and complete binary tree architecture graphs, we
have found tEz -he CPU execution time of the algorithm grows, on average
over random!T snerated input instances, as O(n?®) in our experiments, rather

than the O(r* vorsi-case theoretical behavior. As expected, the execution

144

time of the algorithm is experimentally observed to be relatively insensitive
to transfer lengths. However, we observed that, for a fixed architecture and
traffic requirement, the execution time dropped as the user link capacity was
increased. While we ofer an informal explanation for this result, it indicates

that the theoretical analysis can be sharpened.

An obvious direction for extensions to this work is consider the use of heuris-
tics in place of the optimal algorithm. We shall consider one such heuristic in
Chapter 6. We have also considered the situation where data transfers can be
preempted at arbitrary points, i.e., data packets can be of arbitrary length.

This result is discussed in a later chapter.

For future work, we suggest two related questions. The first is whether the
architecture graph can be generalized from a tree topology to an architecture
with a higher connectivity. An example would be a hypercube network. Such
an extension to our scheduling algorithms would be of significant practical
interest. For instance, Ghosh and Agarwal [57] have proposed a hypercube
network for 1/0, in addition to the existing hypercube network for inter-
processor communication, to overcome the parallel 1/0 bottleneck in hyper-
cube multiprocessor architectures such as the Intel iPSC/2 and iPSC/860. An
extension to higher-connectivity architectures would also be of theoretical in-
terest in order to investigate whether polynomial-time or pseudo-polynomial
time algorithms could be then be developed. So the second question that
we suggest for future work is to determine the smallest set of extensions to
the tree architecture defined in Tree DTS which still allow polynomial-time
algorithms to be developed.

Chapter 6

A Fast Heuristic for Hierarchical Architectures

In the previois capter we discussed an optimal algorithm for scheduling
data transfers in wree structured architectures, and a theoretical as well as
experimental sval'uation of its performance. This optimal algorithm, Tree,
thus applies 1 the TreeDTS scheduling problem, and has a time complex-
ity of O(Cn*. wheere n is the number of users (or leaves in the architecture
graph), and [is the average capacity of the links connected to the users.
The experimental evaluation showed that, for the situations studied, the av-
erage executim timne of the algorithm varied as n? rather than n* for random
input graphs. While the theoretical worst-case time complexity is an improve-
ment over previows algorithms in this area, and the experimentally measured
average-case :ehavior gives us better performance than the worst-case behav-
ior, the algorshm may still not be fast enough for some applications. Since
the algorithm will be executed repeatedly in any realistic batch scheduling sit-
uation, any gin im speed will help improve overall system performance. This

motivates the sea~ch for faster approximation algorithms to solve TreeDTS.

In this chapter we present an approximation algorithm based upon a simple

greedy hearisic. In sec. 6.1 we describe the approximation algorithm, and

145

146

in sec. 6.2 we describe an experimental evaluation of its performance, as well
as a comparison of its performance with that of Tree. We end with a brief

discussion.

6.1 A greedy heuristic

The basic idea of the greedy heuristic for TreeDTS is quite simple, and
similar in spirit to the greedy heuristics for Simple DT'S and DTS discussed
in Chapter 4. For each time slot, a set of transfers between sender-receiver
pairs is chosen such that it is ‘feasible’, i.e., the resulting traffic on any link in
the network does not exceed the capacity of that link. The “greedy” aspect
of this approach lies in that as large a set as possible is chosen for each time
slot; the “heuristic” aspect lies in that for each time slot, the transfers are
examined once, in some order, and a transfer is added to the feasible set only
if the resulting set will not violate the link capacity constraint. An algorithm

based on this idea is described below.

Algorithm Greedy Tree Heuristic

Input: An instance of TreeDTS = (PG, AG, RG, f, Preempt), where the
bipartite resource graph is denoted RG = (A, B, E).

Output: A schedule satisfying TreeDTS, represented as a set of feasible

transfers for each time slot.

1. Assign some order F = (€1, €z, ...,€n) to the edges of E
2.1:=0

3. while F # {} {

4.
5.
6.

1.
8.
9.

10.

11.

12.

13. }

E = {} /* Feasible transfers for this time slot */
for each e read in sequence from F' {
if the traffic due to {e} U E’ for any link in AG does not
exceed that link’s capacity {
add e to E'

remove e from F and F

}
=141
Assign an order F to the edges of E

147

Clearly, the performance of the heuristic will depend upon the ordering F

of the edges in the resource graph. The bulk of the execution time of the

algorithm will be spent in sorting the edges to obtain F, and in checking

for each transfer and each time slot that the edge set E’ represents a set of

feasible transfers.

The heuristic that we have investigated simply orders the edges in E by the

order in which they are presented to the scheduler, i.e., essentially a random

ordering. Thus obtaining F from E takes no time. We call the resulting

algorithm the Greedy Random Assignment (GRA) algorithm.

148

6.2 Experimental evaluation of the greedy heuristic

The GRA algorithm was implemented and evaluated experimentally in a
manner similar to that described in 5.5 for Tree. In fact, many of the under-
lying routines in the implementation used were the same, as was the ‘driver’
program for parsing inputs and keeping statistics. Also, GRA was evaluated
for the same set of input parameters as described for Tree, and using the
same random number generator, seeds, and number of input graphs per ex-
periment. Specifically, the three experiments described as Tree expt. 1-
3 in sec. 5.5 were repeated, with the Tree algorithm replaced by the GRA
algorithm; the resulting experiments are called GRA expt. 1 - 3. There is
one difference in the results obtained: since GRA 1is an approximation algo-
rithm, there are two measures of peformance: the makespan of the schedule
calculated, and the amount of time to needed to calculate the schedule. In
the following, the figures presented for Tree in sec. 5.5 are shown again to

allow easy comparison with those for GRA.

GRA expt. 1. Effect of varying nuumber of senders. The performance of
GRA is compared with that of Tree for this experiment in Figures 6.1 and
6.2. From Fig. 6.1 we see that as the number of sending (or receiving) users
grows, the savings in execution time obtained by using the heuristic increases.

The curve fit is given by the equation:
GRA(n) = 17.89 x 107* n? —2.35%x 1072 n +0.173,

R2? = 98, R1? = .90, R0? = .99

149

]
/' Optinul
]
3 3
PO
.EE
E 2
S Heuristic
1
0t
0 8

Number of users, n

Figure 6.1: CPU time for GRA and Tree versus number of senders or re-
ceivers for unit-length transfers and complete binary tree architectures

Thus the increase in execution time of GRA for this experiment as the num-
ber of senders is increased is O(n?), as opposed to O(n®) for Tree. This
improvement obviously comes for a price: the schedule obtained by GRA is,
in general, not of minimum length. In Fig. 6.2 we consider the percentage
increase in the schedule length obtained by GRA. Recall that for each value
of n, one hundred batches were generated at random as inputs. For each
batch, the percentage increase in schedule length was calculated. The figure
shows the maximum and average values of the percentage increase over the
one hundred batches. While the maximum percentage increase observed was

almost 35%, the average penalty was only about 5% or less.

GRA expt. 2. Effect of varying transfer lengths. The execution time of
GRA as the transfer length is varied is compared with that of Tree in Figure

6.3, and the percentage penalty paid in terms of schedule length is shown in

351
2 304
g]
e 254
E])
£ 20]
L5 4
=]
; 15+ . Maximum
é Increase
W
R
o 104
5
& 5“_ . * . Average
Increase
0"'!"!"'!‘ [IR
0 3 16 24 32 40 48 56 64

Number of transfers, n
Figure 6.2: Maximum and average penalty paid for using the GRA heuristic
instead of the Tree algorithm, versus number of senders or receivers for unit-
Jength transfers and complete binary tree architectures

Fig. 6.4.

GRA expt. 3. Effect of varying capacities. The execution time of GRA as
the user link capacities are varied is compared with that of Tree in Iigure
6.5, and the percentage penalty paid in terms of schedule length is shown in
Fig. 6.6. The curve-fit for the variation in execution time is given by the

equation:

GRA(C) =2.79C~%% R

i
o
St

151

7 (, Optimul

CPU Time (sec)
EoS
|

1 Heuristic
T

i T AN | A S S
0 12(8 2%6 384 512 640 768 896 1024
Maximum transfer length, K

Figure 6.3: CPU time versus maximum transfer length for GRA and Tree
for complete binary tree architectures with 64 senders

| Maximum
/\ Increase

5 Average
Increase
—

Percentage of makespan increase due (0 heuristic

" S [T T T
0 128 256 384 512 640 768 896 1024
Maximum transfer length, K

Figure 6.4: Penalty paid for using GRA versus maximum transfer length for
complete binary tree architectures with 64 senders

; yo—

J——

Optimal

CPU Time (sec)

e

Heuristic

LA S R A T T

S o e
0 16 32 48 64 80 96 112 128

Capacity of links to users, C

Figure 6.5: CPU time versus user link capacity for GRA and 'Iree for com-
plete binary tree architectures with 64 senders

Maximum
Increase

Percentage increase in makespan due to heuristic

Average

Increase

0 16 32 48 64 80 96 112 128

Capacity of links to users, C

Figure 6.6: Penalty paid for using GRA versus user link capacity for complete
binary tree architectures with 64 senders

153

6.3 Discussion

The experiments described in the previous section show that as the number
of users is increased, the GRA algorithm can provide substantial savings in
average execution time over Tree (upto 50%, or an ésymptotic factor of n
improvement) for a relatively small average penalty (about 5% increase in
schedule length). This behavior is almost independent of the lengths of the
transfers involved. The insensitivity to transfer lengths is as expected, since
although longer transfer lengths will lead to longer schedules, they will in
general not increase the switching complexity, or number of feasible transfers
that are calculated; each feasible transfer will simply be re-used for a greater

number of time slots.

The running time of GRA follows that of Tree as the user link capacities
are incresed. The discussion in sec. 5.6 applies to GRA also. It is interesting
to note that as user link capacities are increased, the maximum penalty,
in terms of schedule length, for using GRA increases quite sharply, while
the average penalty remains in the 10-15% range. Clearly as link capacities
increase the optimal algorithm has greater opportunities for maximizing the
number of parallel data transfers at every time slot, while the heuristic does
not backtrack to try to take advantage of these opportunities once a set of
feasible transfers has been found. Further study is needed to fully understand
the differences between the average and maximum penalties, and the effect

of increasing the user link capacities even further.

Taking a broader view, the results of this chapter constitute one exploration of

a design space for constructing heuristics to solve TreeDTS. It is possible to

154

design a different heuristic, for instance simply by changing the ordering that
is applied to the edges of the resource graph in the Greedy Tree Algorithm.
As a concrete example, consider the following promising heuristic: sort the
edges by their congestion, i.e., calculate for each edge the ratio of the transfer
length for that edge to the minimum of the capacities of its end users, and
examine those edges with the highest congestion ratios first. Call this heuristic
the Maximum Congestion First, or MCF heuristic. The MCF heuristic is
myopic in the same sense that GRA is: only part of the input instance
information is examined. MCF is also simplistic in the same sense that
GRA is: no backtracking is done to improve on the initial choices made by
the algorithm. However, MCF would give rise to different, probably better,
performance in terms of schedule length, while paying a greater penalty in
terms of execution time, than GRA. An experimental evaluation of MCF,
very similar in style to that described in this chapter for GRA, could then

be carried out to test and quantify its behavior.

This example shows a general characteristic of the process of designing heuris-
tics to solve optimization problems. There are two classes of design param-
eters: the amount of the (input) state space that is examined, and the com-
plexity of the function applied to it. In the case of the GRA and MCF,
both these parameters are changed: MCF examines more of the state space,
as well as applies a slightly more complex function to it, than GRA. One
can envision a range of heuristics that can be systematically designed, each
appropriate for different input parameters and applications, as the design

parameters are systematically varied.

Chapter 7

Scheduling in Extended Hierarchical Architectures

In this chapter we extend the range of problems that can be solved still fur-
ther. The first extension solves a generalization of the problem of scheduling
in tree architectures that was studied in Chapter 5. In the following section
we consider tree architectures in which some transfers do not traverse the
root of the tree, i.e., both local and remote transfers are permitted. When
this possibility is specified in our model, the architecture graph is no longer a
tree. This problem has applications both for parallel I/O and satellite com-
munications scheduling. We obtain an approximation algorithm that solves
more general cases of the problem than the best previous heuristic, has the

same performance guarantee, but a better time complexity.

The second extension in this chapter considers tree architectures in which
preemptions may take place arbitrarily, and not only at pre-specified integer
boundaries. This problem is applicable to data transfers in systems with con-
tinuous media, such as those in current and proposed multimedia systems.
We show that the Tree algorithm can be modified slightly to solve this prob-

lem. The last extension we mention is that of tree-structured architectures in

155

156

which the users communicate via transceivers. This problem has applications
in packet radio networks. Sasaki [125] has proved that an approximation al-
gorithm can be designed for this problem. The Tree algorithm modified to

handle arbitrary preemptions is used as a subroutine in the solution.

7.1 Systems with local and remote data transfers

In this section we consider an extension to the TreeDT'S problem in which
the architecture graph permits both local and remote transfers i.e., transfers
that pass through the root of the tree architecture (remote transfers), as well
as transfers that only traverse the root of a subtree (local transfers). This
is an important extension as it occurs frequently both for the parallel 1/0O
application as well as the communications switching application. In the case
of the parallel I/O application it occurs in shared-bus systems such as the
Sequent [100] and potentially also in systems such as Hector [138] and inter-
connection networks such as KYKLOS [102]. In the case of communications

networks it occurs for intersatellite transfers [7, 53, 54].

We first define the problem formally in our model, and discuss how it arises in
the parallel I/O and intersatellite communications application. We then show
how the graph-theoretic nature of our specification facilitates the systematic
decomposition of the problem into a number of subproblems, allowing us to
obtain a heuristic solution. This solution also applies to a special case of
the intersatellite communication problem studied earlier by Bertossi et al [7],
and provides the same upper bound on makespan but better time complexity

than the best heuristic available previously.

157

7.1.1 Specification of the problem

A formal specification of the problem in the model is as follows. See Fig. 7.1

for an example.

LocalRemote DTS = (PG, AG, RG, f, Preempt)

where the 5-tuple is defined as follows.

PG = (T, Ep, Lp) has |T| = m tasks, of length Lp(t) € N for all t € T, and

|Ep| = 0, i.e., no precedence constraints.

AG = (R, Ea, La) has |R| = n + 3b vertices, with n vertices of type SUSER
and RUSER b vertices each of type MUX and DMUX, and b vertices of
type NULL. Each NULL vertex is the root of a three-level tree which can
be specified exactly as the architecture graph of TreeDTS, with N leaves of
each type SUSER and RUSER. (Hence n = 2bN). One of the NULL
vertices, called the system vertez, has an incoming arc from the root of every
other DMUX subtree to the root of its MU X subtree and an outgoing arc
from the root of its DMU X subtree to the root of every other MUX subtree.
(These arcs are called inter-bus links, a name suggested by the parallel 1/O
application). The capacity is La(e) = 1 for all e € Ea except those arcs
incident on the NULL vertices; for the latter arcs La(e) > 1 and, for the

parallel 1/O application, represents the bus capacity.

RG = (R, Er, Lr) is a bipartite graph, where Eris a set of arcs from SUSER

to RUSER vertices only, leaving the assignment of other resources implicit,

Receiving users,
type RUSER

Demultiplexer
tree root

Buses, type
NULL vertices

Multiplexer Tree
Roots, MT

Sending users,
| type SUSER

Inter-bus

links

Figure 7.1: AG for the scheduling problem with local and remote transfers,

LocalRemote DTS

and Lr is a bijection from Er to T. RG is further restricted in that if the
only path between a pair of SUSER and RUSER vertices in AG contains

more than one inter-bus link, there is no arc between those vertices in RG.

f 1s makespan.

Preempt is true.

We discuss two applications which give rise to the LocalRemote DTS problem.

159

.
_ sest ETHERNET
DUAL CPU MEMORY MEMORY | CONTROLLER

PROCESSOR CONTROLLER EXPANSION | ETHERNET

BOARD BOARD BOARD INTERFACE
DIAGNOSTICS AEMOTE
PROCESSOR
s CONSOLE
ﬁ ﬂ :
suc 8us 1
1 LOCAL
SYSTEM BUS (B0 MBYTES/SEC) CONSOLE
'T " SCS1 BUS
MULTI
MULTIBUS ADAPTER Oual-Channel

Oisk Controtler

INTERFACE BOARD

540 MByte 264 MByte
MULTIBUS DISKS DISKS

T ey

16 LINE USER %" TAPE

Mux DEVICES 150 MByte %~ TAPE

DISKS
(527 only!

Figure 7.2: Sequent architecture

7.1.2 The parallel I/O application

The bus I/O scheduling problem consists of scheduling the data transfers
among processors and peripheral devices connected via a collection of hierar-
chically organized buses. Examples of such architectures include the commer-
cially succesful Sequent [100] and the research prototype Hector [138]. The
Sequent system (Fig. 7.2) has a two-tier arrangement of buses. A single fast
system bus connects processors and main memory. Several relatively slow 1/0
buses, e.g. SCSI or Multibus (see [68]), connect I/O devices to the system
bus. Each bus permits at most one data transfer to be in progress at any

given time.

Two types of I/O transfers may take place. Data transfers from one 1/0 de-

vice to another on the same bus are called local transfers, while those among

160

main memory and I/O devices on separate buses are called remote transfers.
A remote transfer requires simultaneous posession of an I/0 device, a system
bus, an I/O bus, and either a memory unit or another I/O device. A local
transfer requires two 1/O devices and a local bus. An example of an applicat-
jon requiring local transfers is 3D visualization of scientific data (e.g. [144]),
for which a fast disk may supply data to a high-performance graphics work-
station connected to a common local bus. A more mundane example is the
periodic backup of files from disks to tape. Each transfer consists of a number
of fixed-size units (e.g. disk blocks) which we call packets, and transfers can
be preempted at packet boundaries. It is assumed that each I/O device or

memory unit has one port and is either a sender or a receiver of data.

As mentioned in Chapter 3, given the increasing data transfer demands of
new applications programs, there are likely to be multiple parallel buses in
future bus-oriented parallel architectures, as in the IBM RP3 [115]. Even if
only one bus is available, however, if the bus bandwidth is high enough it
can be time-shared to effectively provide many parallel 1/O transfers. An
example of a bus for which this is possible is the Sequent system bus, which

has a bandwidth of 53 MB/s.

71.3 The intersatellite communications application

The intersatellite communications scheduling problem [7] consists of sched-
uling the data transfers among a set of zones on the ground via a network
of satellites, ground-satellite links and intersatellite links (ISL). Each zone

communicates with one satellite. Each ground-satellite link and each ISL is

161

S1 S2
KEY

. Satellite

O Ground zone
O O O O «3» Intersatellite

Gl G2 G3 G4 G5 G6 Link

<—> Ground-to
-air link

Figure 7.3: Example ISL communications system

bidirectional and allows at most one transfer in each direction at any given
time. Both local transfers between zones connected to the same satellite,
as well as intersatellite transfers between zones connected to different satel-
lites, are possible (see Fig. 7.3). Data for a single transfer is transmitted as
fixed-length packets which may be interspersed on the communications links
with packets from other transfers. It is assumed that there is no intersatel-
lite transfer required between two zones if their respective satellites are not

connected by an ISL.

Bertossi et al [7] have shown that the ISL communication scheduling problem
is NP-complete for an arbitrary number of satellites even for highly restricted
ISL network topologies, and zero ISL propagation delay. They conjecture [7]
that the special case of just two satellites and zero ISL delay, which we call

the SimplelSL problem, is also NP-complete, and propose two suboptimal

162

heuristics. Both heuristics generate schedules of at most twice the optimal
schedule length. That is, the upper bound on the makespan, UB(1) = 2 LB,
where LB is a lower bound on the makespan defined as follows. Let L(u,v)
be the total intersatellite traffic from satellite u to satellite v, ST'(u) the total

traffic sent from zone u, and RT(u) the total traffic received at zone u. Then,

LB = maz{maz{L(i,j): 1 <4,j <bAi#j}
maz{ST(1):1 <i<n},mac{RT(1):1<:< n}}

The time complexity of the first heuristic is O(n*%), and of the second is

O(n3%).

The ISL problem has also been formulated as a modified open-shop by Ganz
and Gao [53] for the case of arbitrary ISL propagation delay, and a heuristic
has been proposed. The modified open-shop formulation models each uplink
as a processor and each downlink as a job. Since each local data transfer
requires an uplink and a downlink simultaneously it is modeled as one oper-
ation of a job on a processor. Since the transfers through a downlink may
occur in any ‘order, the operations of jobs on processors are modeled as not

having any technological cobstraints, i.e., as an open shop.

The difficulty with this formulation arises in its modeling of intersatellite tr-
ansfers, which require three resources (uplink, downlink and ISL) simultane-
ously. Each direction of an ISL is modeled as a processor and a job consisting
of only one operation which executes on that processor. Thus an intersatellite

transfer assumes implicitly that two processors are used simultaneously, and

163

this assumption is enforced when each time slot is scheduled by the heuristic

solution [53].

From our viewpoint the problem specification in our model is preferable to the
open-shop formulation as the former clearly and explicitly specifies precisely
which transfers require which three resources simultaneously. (This approach
subscribes to software engineering principles which advocate a clean separa-

tion between the specification of a program and its implementation).

An assumption made by Ganz and Gao [53] is that the ISL propagation delay
§ s the same for all ISL. In addition, an intersatellite transfer of length ¢
time units is assumed to require the uplink and downlink for ¢ + 6 time units
and the ISL for ¢ units. We assume that an intersatellite transfer requires all

three links for time t + 6.

SimpleISL is the same as LocalRemoteDTS except that b = 2, and, since a
zone may send and receive data simultaneously, each zone is represented as
one SUSER vertex and one RUSER vertex. In the following section we
describe a heuristic to solve LocalRemote DTS and SimplelSL.

7.1.4 The decomposition heuristic

The heuristic we use to solve LocalRemoteDTS is to decompose the architec-
ture graph into trees and apply the solution used for TreeDTS. One set of

trees allows only local transfers to take place, and one tree allows the remote

164

®

vertex

System
? vertex

f MuploerTree Qe %
xﬂD & &H}) W qﬂ{ }Iﬁ‘ Sending users, type xm) q{ }HD QIHI{ EB}
i

Figure 7.4: Applying the decomposition heuristic

NULL vertex (R System

% % Receiving users,
type RUSER
Demultiplexer tree
root

B>

transfers to take place. An example of the decomposition is shown in Iig.

7.4.

Decomposition Heuristic.
Input: Scheduling problem LocalRemote DTS.
Output: A schedule satisfying LocalRemoteDTS.

Step A. Decompose LocalRemoteDTS to b Local data transfer problems

1. Let AG' = (R, Ed',Ld’) with Ed’ = Ea — {e : e is an inter-bus link}
to to obtain a forest AG' = {AG'(1),AG'(2),...,AG'(b)}. Ld' is La
restricted to Fa'.

2. For 1 <¢<b, let RG'(z) = (R'(¢), Ev'(4), Lr'(2)) be RG restricted to
the vertices in AG(2).

165

3. For 1 <i< b, let PG'(i) = (T'(), Ep'(i), Lp'(i)) with T'(2) restricted
to the arcs of Er'(i), i.e., T'(1) = {t : t € Lr'(i)}, and Ep'(:) and Lp'(z)
restricted to T"(¢).

4. For 1 <i<b, there is a scheduling problem LocalDTS(i) = (PG(i),
AG(i), RG(1), f, Preempt).

Step B. Decompose LocalRemote DTS to one Remote data transfer problem

1. Let AG" = (R", Ed", La") be constructed as follows. Denote the NULL
system vertex as s, its MUX child as MT and its DMU X child as DT.
Then R = R— {v:v & NULL — {s}}. Let E be Ea restricted to R”
and with all inter-bus links deleted. Let F' = {(u, MT) :u# MT A uis
a MUX verter}. Similarly let G = {{DT,u) : u £ DT ANuisa DMUX
verter}. Then Ea”" = EU FUG. La"is La restricted to Ea” and with
unit capacities for arcs in F U G.

2. Let RG" = (R, Er", Lr") with Er" = Er — {e:e€ Er'(1),1 <i<bj,
and Lr" restricted to Er”.

3. Let PG" = (T", Ep",Lp") where T" = {t : t = Lr"}, and Ep” and Lp"
are restricted to T".

4. Obtain a scheduling problem RemoteDTS = (PG”, AG”, RG”, f, Pre-

empt).

Step C. Schedule Local data transfers. For each LocalDTS(i), call the Tree
algorithm.

Step D. Schedule Remote data transfers. Call the Tree algorithm to solve
RemoteDTS.

166

End Heuristic.

Theorem 7.1 The decomposition heuristic solves an instance of LocalRe-
moteDTS in time O(n*), providing a schedule with an upper bound on the
makespan of UB(2) =2 LB.

Proof. The heuristic clearly terminates, and from the construction it is plain
that the b+1 scheduling problems Local DT S(i) and Remote DT S are special
cases of TreeDTS. Recall that the time complexity of the Tree algorithm is
O(n*C) where n is the number of user nodes and C is the average capacity of
the user links For LocalRemote DTS the user nodes are SUSER and RUSER
vertices and the user links are the arcs incident upon them, so C = 1. For
Local DT S(7) the number of user nodes is 2NV = n/b while for RemoteDTS
it is n, so that the time complexity of the decomposition heuristic is O(n*).
The length of the schedule generated by the heuristic has an upper bound
given by

UB(2) = maz{L(i,j): 1 <4,j <bAi#j}
+ maz{maz{ST():1 <i < n},maz{RT():1<2< n}}
<2LB
= UB(1) O

The decomposition heuristic is a generalization of the heuristics of Bertossi
et al [7]. For the SimpleISL problem the decomposition heuristic compares
favorably with those Bertossi et al, which have the same upper bound on

schedule length and have time complexities of O(n*®) and O(n®®).

167

Our approach to the scheduling problem for local and remote transfers also
illustrates the use of the scheduling model to obtain effective solutions to

scheduling problems by graphical decomposition of the abstract specification.

7.2 Systems allowing arbitrary preemption

In this section we briefly note that the Tree algorithm can be modified to
solve problems in which the traffic demand is non-integer or the system allows
preemption at arbitrary boundaries. This may be useful for data transfers
involving continuous media, which is becoming more commonly used in mul-

timedia applications.

It turns out that the proof of correctness, and the time complexity, of Tree
derived in need to be modified only slightly. The lower bound on the schedule

length becomes:
L'(r) = maXeer %’(%2

The definition of network link lower bound and network link capacity are

changed to:

B(e) =4 e). ifeE]*? and t—;{g = L'(r)
0, otherwise

c,(e)_{o, ifec E and t.(e) =0
R Le(e). otherwise

168

Similar changes to other definitions and proofs, most of which are straightfor-
ward, show that Tree remains optimal for solving TreeDTS with arbitrary

preemptions, and the time complexity remains O(C n*). For details, see Sasaki

and Jain [125].

7.3 Applications to packet radio and transceiver sys-
tems

An important extension to the TreeDTS problem is the case where users
communicate through transceivers. A transceiver is a device that can transmit
and receive, but not both at the same time. This problem has applications
for packet radio networks and other communications networks. Special cases
of the problem have been studied by Hajek and Sasaki as well as Choi and
Hakimi [66, 25].

The paper by Sasaki and Jain [125] shows that the Tree algorithm modified to
handle arbitrary preemptions, mentioned above, can be used as a subroutine
to approximately solve a special case of TreeDTS with transceivers. The
modified algorithmm has a time complexity of O(Cmn?). The proof is due

to Sasaki.

7.4 Conclusions and future work

The previous work related to the results in this chapter has already been

discussed; it can be found in [7, 66, 25, 53, 54, 125].

169

Our contributions in this chapter can be summarized as follows. Firstly, we
have found an approximation algorithm for the problem of data transfers in
tree architectures when both local and remote transfers are allowed. This
problem has important applications for parallel I/0O as well as intersatellite
communications. Our algorithm generalizes previous work that was done in
the context of intersatellite communications, provides a performance guaran-
tee at least as good as that provided by the previous best heuristic, and has
better time complexity. Secondly, we have shown that the Tree algorithm
can be modified to apply to tree architectures in which preemption can occur
arbitrarily. Such systems may become more prevalent in the future with the
spread of continuous media in multimedia systems. Finally, we mention that
the Tree algorithm has been shown to provide a heuristic for data transfer

scheduling in systems with transceivers.

For future work, we suggest two questions. The first is to determine the
operating parametres for which the heuristic for local and remote transfers,
as well as the Tree algorithm for continuous media, provide practical solutions
for the parallel I/O application. The second is to resolve the open question
of whether SimpleISL, the intersatellite communication problem with two

satellites for which we have provided a heuristic, is NP-complete.

Chapter 8

Scheduling Tasks Under Mutual Exclusion and
Precedence Constraints

A natural extension to the data transfer problem DT'S is to allow the speci-
fication of logical constraints between tasks. In this chapter we will consider
two types of constraints: mutual exclusion constraints and precedence con-
straints. Informally, a mutual exclusion constraint between two tasks means
that in any legal schedule they are not permitted to execute simultaneously.
Note that precedence constraints are logically stronger than mutual exclusion
constraints. as they additionaly specify the order in which tasks must occur.
While the scheduling of tasks with precedence constraints has been studied
extensively (e.g. see Chapter 2 and [56, 112]), to our knowledge the previ-
ous work on mutual exclusion constraints is very limited, despite its practical
applicability to parallel computing. Thus we first concentrate on developing
results for scheduling tasks under mutual exclusion constraints, and in sec.
8.2 we present some results on the NP-completeness of precedence-constrained

scheduling.

170

171

8.1 Mutual exclusion constraints

Mutual exclusion constraints on tasks are very common in parallel programs,
and represent a natural and practical means of expressing synchronization
requirements. The CODE parallel programming environment, for instance,
provides a limited form of mutual exclusion constraints for this purpose [15],
[140], [141]. We surmise that mutual exclusion constraints may also be useful
for expressing scheduling constraints on problems drawn from many other

application areas, including the communications switching application.

An advantage of our model (see Chapter 2) over simpler classification schemes
is the ability to perform graph transformations to the problem specifications
so as to prove that two problems are related in the sense that a solution to
one is a solution to the other. In this section we demonstrate this by showing
the scheduling problem for data transfers in systems with tree-structured ar-
chitectures (TreeDTS) is related to scheduling data transfers in the presence
of limited mutual exclusion constraints. The limited mutual exclusion con-
straints are a superset of those allowed in the CODE 1.2 parallel program-
ming environment [140]. We thus obtain an algorithm producing optimal-
length schedules for this application of parallel I/O scheduling in a parallel

programming environment.

8.1.1 Problem definition

We consider the data transfer scheduling problem in which each data transfer

operation involves a distinct pair of resources drawn from two disjoint resource

172

sets. and each transfer may be required to be logically mutually exclusive with
a (restricted) set of other transfers. For simplicity we assume in the following
that the architecture provides a direct dedicated link between every pair of

communicating entities.

In our model the problem is specified as follows:
LimMuter= (PGi, AG1, RGy, f1, Preempt;)

where the elements Qf the 5-tuple are defined as follows.

PG: = (T, Ep,Lp) where |T| = n, Lp(t) is the length of task t € T, and
Ep is a set of hyperedges. Recall that in the model hyperedges represent
mutual exclusion constraints between tasks, i.e., no two tasks included in the
same hyperedge may execute simultaneously. We will introduce a hierarchy

of restrictions on Ep below.

AG, = (R,Ea,La) with |R| = 2n contains vertices of type SUSER and
RUSER corresponding to sending users and receiving users respectively. For
ease of exposition we assume the number of both sending users and receiving
users is equal to n, although this restriction can easily be relaxed. Ea forms
a complete directed bipartite graph from vertices of type SUSER to vertices
of type RUSER, and La(e) = 1 is the link capacity for all e € Ea.

RG, = (R, Er, Lr) where Er is a set of arcs from vertices of type SUSER to
those of type RUS E R such that no two edges share a vertex. Lr is a bijection
from Er to T.

173

f1 is makespan.

Preempt; = true.

Terminology. The abbreviation mutez stands for “mutual exclusion con-
straint”; the plural is muteres. Vertices and hyperedges in PG will some-
times be called the entities they represent, i.e., tasks and mutexes, and vice
versa. A set of vertices in PG (i.e., tasks) connected by a hyperedge is called
a muter set. A task t € T is said to participate in a mutez if 1t is a member

of a mutex set in PG. The degree of a graph G is denoted degree(G).

8.1.2 Limited Mutual Exclusion Constraints

Allowing arbitrary mutexes between tasks can lead to very complex restric-
tions which are difficult for run-time systems to enforce efficiently, let alone
schedule optimally; to our knowledge there are no published scheduling re-
sults in this area. It is necessary to consider limited mutexes that provide a
trade-off between expressibility and efficiency. We consider three successively

looser restrictions.

R1. A task may participate in at most one mutex, i.e., degree(PG,) < 1.

R2. There are no hyperedge cycles of odd length in PGy and
degree(PGy) < 2.

R3. A task may participate in at most 2 mutexes, i.e., degree(PGy) < 2.

174

xes
T T T3 T8® QO T4
060 " O

T6
tex per task R2. There are no cycles of hyperedges
RI Avmost one muexp of odd length and there are at most two
R3. At most two mutexes per mutexes per task
task
T T2 T3
4
T6 I S) @ T4 KEY: mutex 1, ml
N S mutex 2, m2 =--=="="
O TS mutex 3, m3 = == ==

mutex 4, M4 m = -
Figure 8.1: Limited mutual exclusion constraints

Clearly, R1 = R2, and R2 == R3. In Fig. 8.1 we show examples of precedence
graphs satisfying RI - R3. Restriction RI is implemented in the CODE
1.2 parallel programming environment [140]. We will show that there exist
instances of the LimMutex problem satisfying R3, but not R2, which cannot

be scheduled using the Tree algorithm of Chapter 5.

8.1.3 Transformation

We will transform LimMutez into the problem Tree* defined below, which
is an instance of TreeDTS. The basic idea is that the mutual exclusion con-
straints in LimMutez are converted to architecture constraints. For an exam-

ple of this transformation, see I'ig. 8.2.

Tree* = (PGy, AGq, RGy, fo, Preempts)

175
T oY) B
:. = :
™ ¢ (D T4
™ O— -@ - - s
6

O Dummy node. Type NULL

Precedence Graph for LimMutex
satisfying R2

Root of Demultiplexer

f Multiplexer
Root of Multip!) Treo, DT

Subtree, MT Demultiplexer

nodes, type
DMUX

. ‘ A
OO0 = cceeee

S1 S2 S3 S4 S586 S7 S8 Rl R2 R3 R4 RS R6 R7 R8

Multiplexer
nodes, lype

KEY: mutex 1, ml
mutex 2, m2 smsmesns:
mutex 3, m3 mm wm - -
muex 4, M4 we = o=

Sending Users, Receiving Users,
type SUSER type RUSER
Architectare Graph for Tree*

Figure 8.2: Example mutex transformation

where

PGy = (T,Ep,Lp) has |T| = n and Ep = {}, as in TreeDTS. Preempl; =
Preempt; and f, = f1, and both variables are as in TreeDTS. RGy = RGYy,
and hence this is a special case of TreeDTS where no two arcs share a vertex
since there are no resource assignment conflicts. AG; = (R, Ea, La) is a
special case of TreeDTS (see Fig. 5.1) in which all arcs not connected to the

root have capacity 1, and the arcs entering and leaving the root have capacity

n.

An informal explanation of the transformation is given here (see Theorem
8.1 below for the proof). The basic idea is that the two sets of leaves of the
architecture graph of Tree* represent data senders and receivers respectively,

and the interior vertices model the mutual exclusion constraints of LimMutezr.

176

KEY: mutex 1, ml
mutex 2, m2 ----====
muteX 3, M3 cwm==

Each Task Tiisa
transfer from Sito Ri

Figure 8.3: Example PG satisfying R A ~R2

For instance, a MUX vertex with two incoming unit-capacity arcs from two
senders, but a single outgoing arc of unit capacity, will allow only one of the

senders to transfer data at any given time.

Both MUX and DMUX interior vertices can be introduced to model mu-
texes, and each sender and each receiver can be connected to an interior
vertex. Since each data transfer task involves a distinct sender-receiver pair,
it would thus seem that each task can be allowed to participate in two mu-
texes; in other words, restriction B3 would seem to suffice. However, the tree
topology of the architecture graph requires that every path from a sender to
a receiver include the root vertex. This necessitates the stronger restriction
R2 on mutexes. Fig. 8.3 shows an example for which R3 is satisfied but k2

is violated, and an instance of Tree* cannot be constructed.

177

Theorem 8.1 An instance of LimMutez satisfying R2 can be transformed to

an instance of Tree*.

Proof. (Follows from Lemmas 8.1 - 8.3 below.) For convenience PGy, the
precedence graph of LimMutez, is converted to a mutez graph containing
edges but no hyperedges. Condition R2 can then be stated as an equivalent
condition R2’ on the mutex graph (see Lemma 8.1). The key step of the
proof is contained in Lemma 8.2, which shows that, provided the mutex graph
satisfies R2’, each vertex in the mutex graph (i.e., each mutex in PG1) can be
systematically represented as an interior vertex of type MUX or DMUX in
AG, so that adjacent vertices in the mutex graph are assigned different types.
This process is called typing, and an algorithm for performing it is given.
Once the interior vertices have been consistently typed, it is a straightforward

construction to obtain AG, (see Lemma 8.3). O

Def. Given a precedence graph G = (V, E, L) containing only hyperedges, the
corresponding mutex graph is Mg = (V',E',L") where V' = {m, :e; € E},
E = {(mi,m;) : ei,e; EENe;Nej # {}}, and L' : V' = 2" is a labeling

function such that L(m;) = {u : e; is incident on u}.

Vertices of Mg may also be called mutexes. We state a condition R2’on the

mutex graph.

R2’. There are no cycles of odd length in the mutex graph MG corresponding
to P Gl.

178

Lemma 8.1 R2 = R2.

Proof. Clearly degree(PG,) >3 = —-R2', and if there are cycles of odd
lengthin PG so are therein MG. Hence ~R2 = - R2. Proving ~R2 = —~R2
is equivalent to showing that if MG has an odd cycle and degree(PG;,) <2
then PGy also has an odd cycle, which follows from the construction of MG.

0

We assign a type MUX or DMUX to each vertex in the mutex graph MG
using the Typing Algorithm given below. We will see that in order to subse-
quently construct a tree, the typing algorithm must assign different types to
adjacent vertices in the mutex graph, which can only be done if the mutex

graph satisfies R2’

Def. A vertex set M C V' of a mutex graph MG = (V',E', L) is said to
be consistently typed if for all m,m’ € M such that (m,m') € E', type(m)
+ type(m’). A mutex graph is said to be consistently typed if the set of all

its vertices is consistently typed.

Typing Algorithm.
Input. Mutex graph MG = (V', E', L') satislying R2’.
Output. Type function type : V' — {MUX,DMUX}.

Let type(m,) = MUX for some m; € V'
Let A, = (Wi, Ey) with Vi = {m1}.

179

1=1
Repeat
Choose some m € V' — V; such that for some m’ € V;, (m,m’) € E'.
Let type(m) be the opposite of type(m’)
Let Aipr = (Vig1, Eiqa) withVi, =V U {m} and Ejy, = E; U {(m,m")}.
1=141
Until all vertices in V' are typed.

End algorithm.

Lemma 8.2 Given a mutez graph satisfying R2’, the Typing Algorithm pro-

duces a consistently typed mutezx graph.

Proof. By induction on the sequence Ay, ..., Ap. Wiog assume that the mutex
graph MG = (V', E', L") is strongly connected. Then by the construction so
are all the A;.

basis. Clearly A, is consistently typed.

hyp. A; is consistently typed.

ind. Let m be the unique element of Vi1; — V;. By construction there exists
a vertex m' € V; such that (m,m’) € E' and type(m) # type(m'). Suppose
there exists m” € V; such that (m,m") € E' and type(m) = type(m”). Then

there exists a path of mutexes (m’ = ny,ng,...,n, = m’) in A; since A; is
15762y c--s Tty

180

strongly connected; in addition, type(n;) # type(niy1), for 1 <1 <y, since A;
is consistently typed. The path (n;,ns, ..., ng) followed by m is a cycle of odd
length, contradicting B2’ O

Lemma 8.3 An architecture graph AGs satisfying Tree* can be constructed

from a consistently typed mutez graph MG = (V', E\L).

Proof. By construction of AGy = (Va, E3, Ls).

Vertices of AG,. Let V; = SURUM U DU {MT,DT,r} defined as fol-
lows. S and R are sets of n vertices each of type SUSER and RUSER
respectively. Set M = {m; : m; € V' Atype(m;) = MUX}, and D =
{d; : d; € V' Atype(d;) = DMUX}. Set the types of the roots of the mul-
tiplexer tree, the demultiplexer tree, and of AG; as type(MT) = MUX,
type(DT) = DMUX, and type(r) = NULL.

Arcs of AGy. Let E; = EsUERUEy UEpUEx U {(MT,r),(r,DT)}
defined as follows. Add arcs from sending users to a vertex m € M if transfers
from that user participate in m, i.e., let Es = U, € yEn where E,, =
{(sixm) : s; € S Av; € L'(m)}. Similarly let Er = U 4 ¢ pEa where E, =
{(d,r;) :7; € RAv; € L'(d)}. Add arcs from the MUX vertices to the root
of the multiplexer subtree, i.e., let Ep = {(m,MT) : meM }. Similiarly,
let Ep = {(DT,d) : d € D}. Finally, connect sending users whose transfers
do not participate in mutexes directly to the root of the multiplexer subtree,
and similarly for receivers, i.e., let Ex = {(s, MT) : s € S A degree(s) =
0} U {(DT,s) : s € R A degree(s) = 0}.

181

Labels of AG. Set the arc capacities of all links except those incidert on the
NULL vertex to 1, i.e., forall e € E;— {(MT,r),(r,DT)} let Ly:e =1. Let
Loy((MT,r)) = L:((r,DT)) = n. O

8.2 Precedence constraints

In this section w= consider the problem of scheduling data transfers inder the
presence of precsdence constraints. Clearly, this is an especially mportant
problem for the parallel I/O application. We will show, however. -hat even
for situations in which tasks are of unit length and the precdence cmstraints
are restricted to be in the form of a tree, the problem is NP-complee. In the
following we specify the problem and review some well-known reated NP-
completeness resilts. We then observe the NP-completeness of ou- problem,

and suggest averues for further work.

We specify a resiricted form of the precedence-constrained data trmsfer sch-

eduling problem which we will later show to NP-complete.

TreePrecDTS = (PG, AG, RG, f. Preempt)

where

PG = (T,Ep,L7) has, for all t € T, Lp(t) = 1, and is a tree.

AG = (R,Ea, Lz) is a complete bipartite graph.

182

RG = (R, Er,Lr) is a bipartite graph with |Er| = |T|.

f is makespan, Preempt is true.

We contrast the TreePrecDT S problem with two related scheduling prob-
lems, one of which is the well-known Resource Constrained Scheduling prob-
lem for multiprocessors [55, 56], a special case of which we call Tree RCMS,

specified as follows.

TreeRCMS = (PG, AG', RG', f, Preempt)

where PG, f and Preempt are as for TreePrecDTS.

AG' = (R, Ea,La) is a bipartite graph, i.e., R is partitioned into a set of

‘processors’, R,, and a set of ‘other resources’, R,, but Ea = {}.

RG' = (R,Er,Lr) has R = R, U R, and Er = {}, i.e., the assignment of
tasks to resource instances is not specified. The task resource requirement ir
is that each task requires one processor and some number of other resources,

i.e., for all t € T, there exists k, 0 < k < |R,|, such that tr(t) € R, x RE.

It is known that TreeRCM S is NP-complete [55]. However, we note that in
TreeRCMS the assignment of tasks to resources has to be computed as well
as a schedule minimizing the makespan. Therefore it might be possible that

if the assignment is fixed, finding the schedule is not NP-complete. In fact,

183

this turns out not to be the case, as shown by considering a related problem,
Processor-Bound Multiprocessor Scheduling with tree precedences [64], which
we call TreePBMS.

TreePBMS = (PG, AG", RG", [, Preempt)

where PG, f and Preempt are as for TreePrecDTS and TreeRCMS.

AG" = (R, Ea, La) consists of |R| distinguished vertices, with Ea = {}.

RG" = (R, Er, Lr) has |Er| = |T| consisting of self-loops on each vertex.

Thus TreePBMS differs from TreePrecDTS and TreeRCMS in that each
task requires only one resource, but also differs from Tree RCM S in that the
assignment of tasks to resource instances is known. Goyal [64, 56] has shown,
using a reduction very similar to that used by Garey and Johnson [55], that
TreePBMS is NP-complete.

Observation. TreePrecDTS is NP-complete.

The observation follows from the NP-completeness of T reePBM S, and not-
ing that TreePrecDTS is a special case of Tree PBMS.

8.2.1 Further work

Since the TreePrecDTS problem is of practical interest, it is useful to look

for approximation algorithms for its solution. We are currently investigating

184

several such schemes [79].

A way of specifying the problem that may be useful for future work is to
“merge” the resource and precedence graphs. Informally, the precedence
graph is augmented by adding a hyperdge connecting any tasks that require
the same resource instance (i.e., edges in the resource graph that have a com-
mon vertex). Then the edges of the resource graph can be deleted, since
resource conflict information is already captured in the extended precedence
graph. Note that the extended precedence graph can be simplified: if two
vertices are connected by a directed edge, they need not be connected by
a hyperedge even if they have a resource conflict. This extended precedence
graph may be useful for designing heuristics that consider both the precedence
and resource constraints between tasks simultaneously. (It can, of course, also
be applied to problems in which there are no resource conflicts but tasks have

logical mutual exclusion constraints as well as precedence constraints).

8.3 Discussion

8.3.1 Previous related work

The related work on precedence constrained scheduling [55, 64, 56, 98, and

refernces therein] has already been reviewed in sec. 8.2 and Chapter 2.

To our knowledge, there has been no previous work on scheduling of tasks
with explicit mutual exclusion constraints. Of course, implicit mutual exclu-

sion constraints, such as situations where every task is mutually exclusive to

185

every other task since they all require the same resource, have been stud-
ted extensively. For instance, some of the recent work on scheduling in the
presence of “exclusion constraints” between two tasks (e.g. [145]) actually
-efers to the restriction that if one task is executing, on a single proces-
sor, it may not be preempted by the other. Similarly, general resource con-
straints implicity define mutual exclusion constraints between tasks (e.g., see
[130, 128] and references therein). However, by specifying the mutual ezclu-
sion constraints implicitly, their logical structure is not apparent and cannot
be ezploited. Thus general resource-constrained scheduling is NP-complete for
the non-preemptive case and requires high-degree polynomial linear program-
ming solutions in the preemptive case [56, 130]. In contrast, by considering
the structure of explicit mutual exclusion constraints, we are able to specify a
hierarchy of constraints that can occur in practice, and obtain a polynomial-

time solution.

Almost all the previous work on logical constraints between tasks has focused
on precedence constraints, which are logically stronger than mutual exclusion
constraints and do not capture the synchronization requirements of tasks in
some applications, particularly parallel programming. Some recent work has
started to address this issue by weakening precedence constraints. Berger
and Cowen [6] consider tasks which may be subject to precedence constraints
(the usual partial order), as well as “concurrency constraints” (tasks that
must be scheduled in the same time step) and “weak precedence constraints”
(tasks that must be scheduled before, or at the same step as, some other
task). They do not consider mutual exclusion constraints and simultaneous

resource requirements, however.

186

8.3.2 Conclusions and further work

We have presented NP-completeness results for the problem of scheduling

z-a transfers under the presence of tree-sructured precedence constraints.

We have also presented a solution to the problem of scheduling data transfer
tz2sks when the tasks are subject to a restricted set of logical mutual exclusion
constraints. Such constraints arise naturally in the parallel I/O application,
a=d to our knowledge have not been previously systematically studied. While
our results are limited to mutual exclusion constraints of a restricted class,
trey do apply to those allowed in the CODE 1.2 parallel programming en-
ironment. Further, the technique used in this chapter, of systematically
transforming formal problem specifications, is promising and likely to be ap-
plicable to more general classes of mutual exclusion constraints, as well as

other problems.

For further work, we suggest two questions. The first is whether the opti-
mal algorithm we have developed, or a fast approximation algorithm based
upon it, could be used in parallel programming environments such as CODE.
The situation is quite promising since the mutual exclusion constraints are
explicitly and deterministically specified by the user, and since an automatic
programming system generates all the synchronization code, the algorithm
could be used without the user having to be aware of it. The second question
is whether tasks with mutual exclusion constraints could be combined with
tasks under the constraints of Berger and Cowen’s model [6], i.e., “concur-

rency constraints” and “weak precedence constraints”. This would further

187

weaken the model of task interaction (compared to the usual model of par-

tial orders, i.e., precedence constrained tasks) and allow scheduling in more

realistic situations for applications such as parallel I/0.

Chapter 9

Conclusions and Further Work

We have studied the scheduling of data transfers, a problem of increasing
importance in high-performance parallel computers and communications sys-
tems, particularly with the advent of advanced applications such as volume

visualization and multimedia information systems.

Data transfer scheduling gives rise to an important and interesting class of
simultaneous resource scheduling problems. We have defined a general graph-
theoretical model for precisely specifying and classifying scheduling problems,
and demonstrated its coverage of a wide range of traditional and simultane-
ous multiple resource scheduling problems. We have used the model for the
recognition of the similarity of seemingly different problems from different
application areas, for the systematic transformation of one problem speci-
fication into that of a seemingly different problem, and for the systematic

decomposition of a problem specification into solvable subproblems.

We have obtained optimal and approximate algorithms for a wide range of

problems, including communication architectures in which resources are fully

188

189

connected, cormunication architectures with a tree topology, and tree archi-
tectures in which both Iocal and remote data transfers are permitted. We
have also obtzned resulus for scheduling data transfers under the presence
of mutual exclzsion consiraints and precedence constraints. All these results
either solve mare general instances of the scheduling problem, or have bet-
ter time compl=xity, or provide better approximations than previously known
solutions, or al three. Finally, we have undertaken extensive experimenatal
evaluations of zur algoritmms and determined the situations under which they

operate best.

The results we rave obtained are generally applicable to both parallel comput-
ers and commnications systems. Specifically, they are applicable to certain
types of sharec-bus multiprocessor systems such as the Sequent [100], Encore
[143], and the IBM RP3 [115]; bus-oriented local area networks such as the
Ethernet; TDVMA satellize switches [75]; hierarchical switching systems [39];
tree-structure? multiprocessor architectures such as the Sequent [100], Tree
Machine [133. KYKLOS [102], and Hector [138]; and intersatellite commu-

nications systems [7].

For future wok, we have posed specific questions at the end of each chapter
that relate to 1ae topics studied in that chapter. Here we state some questions

of broader practical and theoretical concern.

1. What is the range of architectures and exclusion constraints for which
we can cotain optirmal, polynomial-time solutions? In particular, can ar-
chitectuzes such as the hypercube and mesh-based systems be covered?

Is it possible to design and evaluate faster near-optimal solutions?

™

o

Is it possible to integrate data partitioning and allocation with data
transfer scheduling so as to provide a better comprehensive approach to
managing paralle] 1/ O7

Is it desirable to integrate routing and scheduling of data transfers, in
computer networks and multiprocessor architectures such as the hyper-
cube? Is it possible to exploit the similarity of the solution techniques
used for some routing and scheduling problems?

Can effective parallel algorithms be developed to perform data transfer
scheduling?

Can the reasoning about the equivalence and transformation of sched-
uling problem classes using our scheduling model be formalized further

into inference rules or general theorems?

BIBLIOGRAPHY

[1] J. Akella and D. P. Siewiorek. Modeling and measurement of the impact
of Input/Output on system performance. In Proc. 18th Intl. Symp.
Comp. Arch., pages 390-399, 1991.

[2] M. Arrott and S. Latta. Perspectives on visualization. IEEE Spectrum,
pages 61-65, Sep. 1992.

[3] Kenneth R. Baker. Introduction to sequencing and scheduling. John
Wiley, 1974,

[4] H. Balan. Master’s thesis, Dept. of Elect. and Comp. Eng., Univ. of
Texas at Austin, 1990.

[5] Claude Berge. Graphs. North-Holland, 1985.

[6] B. Berger and L. Cowen. Complexity results and algorithms for
{ <, <,=}-constrained scheduling. In Proc. Symp. on Discrete Alg.,
pages 137-147, 1991.

[7] A. A. Bertossi, G. Bongiovanni, and M. A. Bonuccelli. Time slot as-
signment in SS/TDMA systems with intersatellite links. JEEE Trans.
Comm., 35:602-608, June 1987.

[8] J. A. Bondy and U. §. R. Murty. Graph theory with applications. North-
Holland, 1976.

191

(9]

[10]

[11]

[13]

[14]

192

G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time
slot assignment algorithm for an SS/TDMA system with variable num-
ber of transponders. Technical Report RC 8301 (# 35888), IBM T. J.
Watson Research Center, 1980.

G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time
slot assignment algorithm for an SS/TDMA system with variable num-
ber of transponders. IEEE Trans. Comm., 29(5):721-726, May 1981.

M. A. Bonuccelli. A fast time slot assignment algorithm for TDM hi-
erarchical switching systems. IEEE Trans. Comm., 37:870-874, Aug.
1989.

H. Boral and D. J. DeWitt. Database machines: An idea whose time
has passed? A critique of the future of database machines. In Third

Intl. Workshop on Database Machines, pages 166-187, 1983.

H. Boral and P. Faudemay, editors. Database machines. Springer-

Verlag, 1989.

D. Bradley and D. A. Reed. Performance of the Intel iPSC/2 in-
put/output system. In Proc. Conf. on Hypercubes, Concurrent Comp.
and Appl., pages 141-144, 1990.

J. C. Browne, Muhammad Azam, and Stephen Sobek. CODE: A unified
approach to parallel programming. IEEE Software, page 11, July 1989.

J. C. Browne, A. Dale, C. Leung, and R. Jenevein. A parallel multi-
stage 1/0 architecture with self-managing disk cache for database man-
agement applications. In Fourth Intl. Workshop on Database Machines.
Springer-Verlag, 1985.

17]

18]

19]

24]

25]

183

J. C. Browne, G. E. Onstott, P. L. Soffa, Ron Goering, S. Sivaramakr-
ishnan, Harish Balan, and Kiran Somalwar. Design and evaluation
of external memory architectures for multiprocessor computer systems:
Second quarter report to IBM Yorktown Heights Research Lab. Techrni-
cal report, Univ. Texas at Austin, Dept. of Comp. Sci., 1987. Available

from J. C. Browne.

C. E. Catlett. Balancing resources. IEEE Spectrum, pages 48-595, Sep.
1992.

S. Chalasani and A. Varma. Fast parallel time-slot assignment algo-
rithms for TDM switching. In Proc. Intl. Conf. Par. Proc., volume 111,
page 154, 1990.

S. Chalasani and A. Varma. An improved time slot assignment algor-
ithm for TDMA hierarchical switching systems. In Proc. Fourth Intl.
Conf. Data Comm. Sys. and their Perf., pages 116-132, 1990.

W.-T. Chen and H.-J. Liu. An adaptive scheduling algorithm for TDM
switching systems. In Proc. IEEE Infocom, pages 663-677, 1991.

W.-T. Chen, P.-R. Sheu, and J.-H. Yu. Time slot assignment in TDM
multicast switching systems. In Proc. IEEE Infocom, 1991.

H.-A. Choi and S. L. Hakimi. Scheduling file transfers for trees and odd
cycles. SIAM J. Comput., 16(1):162-168, 1937.

H.-A. Choi and S. L. Hakimi. Data transfers in networks. Algorithmica,
3:223-245, 1988.

H-A. Choi and S. L. Hakimi. Data transfers in networks with tran-
scievers. Networks, 18:223-251, 1988.

194
[26] E. F. Cocc Multiprogram scheduling. Comm. ACM, 3, June 1960.

[27] E. G. CeZnan, Jr., M. R. Garey, D. 5. Johnson, and A. S. LaPaugh.
Scheduli=¢ ile transfers. SIAM J. Comput., 3:744-780, 1985.

[28] E. G. Cofnan, Jr. and R. L. Graham. Optimal scheduling for two-
processor ssterms. Acta Inf., 1:200-213, 1972.

[29] R. Cole znt J. Hopcroft. On edge coloring bipartite graphs. SIAM J.
Comput.. 2 3):540-546, 1982.

[30] R. W. Convay, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addisorn-Vissley. 1967.

[31] D. de Wera. An introduction to timetabling. European J. of Opera-
tional Ezs. 19:151-162, 1985.

[32] T. A. DeFnti, M. D. Brown, and B. H. McCormick. Visualization:
Expanding scientific and engineering research opportunities. IEEE Co-

mputer. pazes 12-26, Aug. 1989.

[33] P.J. Deznng. Effects of scheduling on file memory operations. In Proc.

AFIPS Sp-ng Joint Comp. Conf., pages 9-21, 1967.

[34] N. Deo. Guph Theory with Applications to Engineering and Computer
Science. Pentice-Hall, 1974.

[35] D. J. D=Wt. DIRECT - A multiprocessor organization for supporting
relatior.z] tatabase management systems. IEEE Trans. Comp., June

1679.

13

12

i

B

195

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. Kumar, and
M. Muralikrishna. GAMMA - A high performance dataflow database
architecture. In Proc. 12th Intl. Conf. on Very Large Data Bases, Aug.
1986.

-7 G. Dobson and U. Karmarkar. Simultaneous resource scheduling to

minimize weighted flow times. Oper. Res., 37(4):592-600, 1989.

< E. W. Dusio, T. P. Murphy, and W. F. Cashman. Communications

satellite software: A tutorial. [EEE Computer, pages 21-34, Apr. 1991.

1 K. Y. Eng and A. S. Acampora. Fundamental conditions governing

TDM switching assignments in terrestial and satellite networks. [EEE
Trans. Comm., COM-35:755-761, 1987.

1 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and

multicommodity flow problems. SIAM J. Comput.. 5(4):691-703, 1976.

S. Fiorini and R. J. Wilson. Edge-colourings of graphs. Pitman, Lon-
don, U.K., 1977.

] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton Univer-

sity Press, 1962.

.37 E. A. Fox, editor. CACM Special Issue on Digital multimedia systems.

ACM, Apr. 1991.

1 J. C. French, T. W. Pratt, and M. Das. Performance meaurement of a

parallel Input/Output system for the Intel iPSC/2 hypercube. In Proc.
SIGMETRICS, pages 178-187, 1991.

Simon French. Sequencing and Scheduling. John Wiley, 1982.

196

[46] A. M. Frieze. Probabilistic analysis of graph algorithms. In G. Tinhofer,
E. Mayr, H. Noltemeir, and M. Syslo, editors, Computational graph
theory, pages 209-233. Springer-Verlag, 1990. Also as Computing Supp.,
vol. 7, Springer-Verlag, 1990.

[47) M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two
equivalent processors. SIAM J. App. Math, 17:784-789, 1969. Erratum,
SIAM J. App. Math., vol. 20, p. 141, 1971.

[48] H. Gabow. Using euler partitions to edge color bipartite multigraphs.
Intl. J. Computer and Inf. Sci., 5:345-355, 1976.

[49] H. Gabow. An almost linear algorithm for two-processor scheduling. J.

Ass. Comp. Mach., 29:766-780, 1982.

[50] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite multi-
graphs. ACM Symp. Th. of Comp., pages 184-192, 1978.

[51] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs
and multigraphs. SIAM J. Comput., 11(1):117-129, 1982.

[52] H. Gabow and R. E. Tarjan. A linear-time algorithm for a special case
of disjoint set union. In Proc. 15th Ann. Symp. Theory of Comp., pages
246-251, 1983.

[53] A. Ganz and Y. Gao. Scheduling on SS/TDMA systems with inter-
satellite links. In Proc. Intl. Conf. Comm., volume 1, pages 515 - 519,
1989.

[54] A. Ganz and Y. Gao. TDMA communication for SS/TDMA satellites
with optical intersatellite links. In Proc. Intl. Conf. Comm., pages 1081
- 1085, 1990.

197

[55] M. Garey and D. Johnson. Complexity results for multiprocessor sched-
uling under resource constraints. SIAM J. Comput., 4:397, Dec. 1975.

[56] M. Garey and D. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. Freeman, 1979.

[57] J. Ghosh and B. Agarwal. Parallel I/0 subsystems for hypercube mul-
ticomputers. In Proc. Intl. Par. Proc. Symp., pages 381-384, 1991.

[58] Alan Gibbons. Algorithmic graph theory. Cambridge University Press,
1985.

[59] G. A. Gibson. Redundant disk arrays: Reliable, parallel secondary stor-
age. PhD thesis, Univ. of Calif,, Berkeley, Comp. Sci. Div, 1990. Also
available as Tech. Rep. UCB/CSD 91/613.

[60] Mario Gonzalez, Jr. Deterministic processor scheduling. Computing

Surveys, 9:173, Sept. 1977.

[61] T. Gonzalez and D. B. Johnson. A new algorithm for preemptive sch-
eduling of trees. J. Ass. Comp. Mach., 27:287-312, 1980.

[62] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish
time. J. Ass. Comp. Mach., 23:665-679, 1976.

[63] C. C. Gotlieb. The construction of class-teacher timetables. In Proc.
IFIP Congress, pages 73-17, 1962.

[64] D. K. Goyal. Scheduling processor bound systems. Technical Report
(S-76-036, Washington State Univ., 1976.

198

[65] H. Hadimioglu and R. J. Flynn. The architectural design of a tightly-
coupled distributed hypercube file system. In Proc. Conf. on Hyper-
cubes, Concurrent Comp. and Appl., pages 147-150, 1989.

[66] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE
Trans. Info. Th., 34:910-917, 1983.

[67) B. Hancock. Multiprocessors are NOT always better. Digitial Rev.,
page 59, Dec. 2 1991.

[68] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, 1990.

[69] D. S. Hochbaum, T. Nishizeki, and D. B. Shmoys. A better than “best
possible” algorithm to edge color multigraphs. SIAM J. Comput., 1:79-
104, 1986.

[70] 1. J. Holyer. The NP-completeness of edge colourings. SIAM J. Com-
put., 10:718-720, 1980.

[71] J. Hopcroft and R. Karp. An n®/? algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2:225-231. 1973.

[72] T. C. Hu. Parallel sequencing and assembly line problems. Operations
Research, 9:841-848, 1961.

(73] IEEE. Proc. Intl. Conf. Univ. Pers. Comm., 1992. Held Sep. 29 - Oct.
2, 1992, at Dallas, TX.

[74] T. Inukai. An efficient SS/TDMA time slot assignment algorithm.
IEEE Trans. Comm., COM-27:1449-1455, 1979.

199

[75] Y. Ito, Y. Urano, T. Muratani, and M. Yamaguci. Analysis of a switch

[76]

matrix for an SS/TDMA system. Proc. IEEE, 65:411-419, 1977.

Ravi Jain. Scheduling I/O in parallel computing environments. Un-

published manuscript, Dec. 1990.

[77] Ravi Jain and Galen Sasaki. Scheduling packet transfers in a class of

(78]

(81]

[82]

(83]

TDM hierarchical switching systems. In Proc. Intl. Conf. Comm., 1991.

Ravi Jain, Kiran Somalwar, John Werth, and J. C. Browne. Scheduling
parallel I/O operations in multiple-bus systems. J. Par. and Distrib.

Comp., Dec. 1992. Special Issue on Scheduling and Load Balancing.

Ravi Jain and John Werth. Precedence constrained I/O scheduling.

Unpublished manuscripts, 1992.

Ravi Jain, John Werth, and J. C. Browne. A general model for sched-
uling of parallel computations and its application to parallel I/O oper-

ations. In Proc. Intl. Conf. Par. Proc., 1991.

Ravi Jain, John Werth, J. C. Browne, and G. Sasaki. A graph-theoretic
model for the scheduling problem and its application to simultaneous
resource scheduling. In ORSA Conf. on Computer Science and Op-
erations Research: New Developments in their Interfaces, Jan. 1992.

Available from Pergamon Press.

W. Jilke. Disk array mass storage systems: The new opportunity. Tech-

nical report, Amperif Corp., Sep. 1986.

C. V. Jones. The three-dimensional Gantt chart. Oper. Res., 36(6):891-
903, 19883.

[84]

(85]

[91]

[92]

[93]

200

H. Jordan. Scalability of data transport. In Proc. Scalable High Perf.
Computing Conf., pages 1-8, 1992.

A. Kandappan. Data allocation and scheduling for parallel I/O systems.
Master’s thesis, Dept. of Elect. and Comp. Eng., Univ. of Texas at
Austin, 1990.

H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge
coloring problems. J. Algorithms, 8:39-52, 1987.

K. N. Karna and E. W. Dusio. Communications satellite software.
IEEE Computer, pages 15-16, Apr. 1983. Special Issue on communica-

tions satellite software.

M. Y. Kim. Synchronized disk interleaving. IEEE Trans. Comp., C-35,
1986.

S. J. Kim and J. C. Browne. A general approach to mapping of parallel
computations upon multiprocessor architectures. In Proc. Intl. Conf.

Par. Proc., pages 1-8, 1988.

T. Kwok. Communications requirements of multimedia applications: A

preliminary study. In Proc. Intl. Conf. Univ. Pers. Comm., 1992.

S. Lam and R. Sethi. Worst case analysis of two scheduling algorithms.
SIAM J. Comput., 6:518-536, 1977.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, 1976.

E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Recent de-

velopments in deterministic sequencing and scheduling: A survey. In

201

Deterministic and Stochastic Scheduling, pages 35-73. D. Reidel Pub-
lishing, 1982.

[94] P. L’Eculyer. Efficient and portable combined random number genera-
tors. Comm. ACM, 31:742-174, June 1983.

[95] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Oper. Res., pages 22-35, 1978.

[96] S. C. Liew. Comments on “Fundamental conditions governing TDM sw-
itching assignments in terrestrial and satellite networks”. IEEE Trans.
Comm., 37:187-189, Feb. 1989.

[97] M. Livny, S. Khoshhafian, and H. Boral. Multi-disk management algo-
rithms. In Proc. SIGMETRICS, May 1987.

[98] E. L. Lloyd. Concurrent task systems. Oper. Res., 29:189-201, 1981.

[99] C. Lo, R. S. Wolff, and R. C. Bernhardt. An estimate of network

database transaction volume to support universal personal communica-

tions services. In Proc. Intl. Conf. Univ. Pers. Comm., 1992.

[100] T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In
Proc. Intl. Conf. Par. Proc., pages 303-310, 1988.

[101] Weizhen Mao. Directed file transfer scheduling. Submitted for publi-

cation, 1992.

[102] B. Menezes and R. Jenevein. KYKLOS: A linear growth fault-tolerant

interconnection network. In Proc. Intl. Conf. Par. Proc., pages 498-

502, 19853.

202

[103] E. Miller. Input/Output behavior of supercomputing applications.
Technical Report UCB/CSD 91/616, Univ. California, Berekeley, 1991.

[104] W. D. Moren. Disk array: You know it when you see it. Workstation
News, Apr. 1992.

[105] B. M. E. Moret, 1992. Private communication.

[106] B. M. E. Moret and H. D. Shapiro. Algorithms from P to NP, Volume
1: Design and efficiency. Benjamin-Cummings, 1991.

[107] T.N. Mudge, J. P. Hayes, and D. C. Winsor. Multiple bus architectures.
Computer, 20(6):42—48, June 1987.

[108] R. R. Muntz and E. G. Coffman, Jr. Optimal preemptive scheduling
on two-processor systems. IEEE Trans. Comp., C-18:101, 1969.

[109] R. R. Muntz and E. G. Coffman, Jr. Preemptive scheduling of time
tasks on multiprocessor systems. J. Ass. Comp. Mach., 17:324-338,
1970.

[110] G. M. Nielson, edizor. IEEE Computer Special Issue on Scientific Vi-
sualization. IEEE. Aug. 1939.

[111] R. G. Ogier. A decomposition method for optimal link scheduling. In
Proc. Allerton Conf. Comput. Comm, pages 822-823, 1986.

[112] Krishna Palem. Om the complezity of precedence constrained scheduling.
PhD thesis, Univ. Texas at Austin, Dept. of Comp. Sci., 1986. Available
as Tech. Rept. TR-86-11.

[113] D. A. Pattreson, G. A. Gibson, and R. H. Katz. A case for redundant
arrays of inexpens®ve disks (RAID). In Proc. SIGMOD, 1988.

[114]

115]

[116]

[117]

[118]

[119]

[120]

[121]

203

P. G. Paulin and J. P. Knight. Force-directed scheduling for the be-
havioral synthesis of ASIC’s. IEEE Trans. Comp.-Aided Design, pages
661-679, 1989.

G. Pfister, W. C. Brantley, D. A. George, 5. L. Harvey, W. J. Klein-
felder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The
IBM research parallel processor (RP3): Introduction and architecture.
In Proc. Intl. Conf. Par. Proc., pages 764-771, 1985.

P. Pierce. A concurrent file system for a highly parallel mass storage
system. In Proc. Conf. on Hypercubes, Concurrent Comp. and Appl.,
pages 155-160, 1989.

A. Pizzarello and F. Golshani. In-memory databases: An industry per-
spective. In Proc. Workshop on Res. Iss. in Data Eng., pages 96-101,
1992.

T. Pratt, J. French, P. Dickens, and Jr. S. Janet. A comparison of the
architecture and performance of two parallel file systems. In Proc. Conf.

on Hypercubes, Concurrent Comp. and Appl., pages 161-166, 1989.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.

Numerical recipes: The art of scientific computing. Cambridge, 1986.

W. Rash. Multimedia moves beyond the hype. Byte, pages 85-87, Feb.
1992.

A. L. N. Reddy and P. Banerjee. Design, analysis and simulation of
1/O architrctures for hypercube multiprocessors. IEEE Trans. Par.
and Distrib. Sys., pages 140-151, Apr. 1990.

[122]

123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

204

R. T. Rockafellar. Network flows and monotropic optimization. John

Wiley, 1984.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint
satisfaction problems. In Proc. Euro. Conf. on Art. Intel. (ECAI90),
1990.

K. Salem and H. Garcia-Molina. Disk striping. In Proc. IEEE Intl.
Conf. Data Eng., 1986.

Qalen Sasaki and Ravi Jain. Scheduling data transfers in preemptive

hierarchical switching systems, 1991. Submitted to IEEE Trans. Comm.

Galen Sasaki and Ravi Jain. Scheduling data transfers in preemptive hi-
erarchical switching systems with applications to packet radio networks.

In Proc. Infocom, 1991.

R. K. Schultz and R. J. Zingg. Response time analysis of multiprocessor

computers for database support. ACM Trans. Database Sys., pages 14~
17, 1984.

Chia Shen, K. Ramamritham, and J. A. Stankovic. Resource reclaiming

in real time. IEEE Real-Time Sys. Symp., pages 41-50, 1990.

A. Silberschatz and J. Peterson. Operating systems concepts. Addison-
Wesley, 1988.

R. Slowinski and J. Weglarz. Advances in project scheduling. Elsevier

Science Pub., Amsterdam, 1989.

J. E. Smith, W. C. Hsu, and C.Hsuing. Future general purpose su-
percomputer architectures. In Proc. Supercomp. ’90, pages 796-804,
1990.

205

1232] Kiran Somalwar. Data transfer scheduling. Technical Report TR-88-31,
Univ. Texas at Austin, Dept. of Comp. Sci., 1988.

[233) S. W. Song. A highly concurrent tree machine for database applications.
In Proc. Intl. Conf. Par. Proc., pages 259-268, 1980.

[234] J.D. Ullman. NP-complete scheduling problems. J. Computer and Sys.
Sci., 10:384-393, 1975.

1:35] J. D. Ullman. Complexity of scheduling problems. In E. G. Coffman,
Jr., editor, Computer and job-shop scheduling theory. John Wiley, 1976.

1:36] A. Varma and S. Chalasani. An incremental time-slot assignment algo-
rithm for TDM hierararchical switching systems. In Proc. IEEE Intl.
Conf. Comm., pages 1554-1558, 1991.

“37] V. G. Vizing. On an estimate of the chromatic class of a p-graph.
Diskret. Analiz., 3:25-30, 1964. In Russian. See Gabow, 1976.

7.38] Z. G. Vranesic, M. Stumm, D. M. Lewis, and R. White. Hector: A hier-
archically structured shared-memory multiprocessor. Computer, pages

72-79, Jan. 1991.
39] S. B. Weinstein. JEEE Spectrum, 1985.

"40] John Werth, Dwip Banerjee, J. C. Browne, Ravi Jain, Steve Lin, Peter
Newton, Ravi Rao, and Steve Sobek. CODE 1.2 User Manual and
Tutorials. Technical Report TR-90-35, Univ. Texas at Austin, Dept. of
Comp. Sci., November 1990.

141] John Werth, J. C. Browne, Steve Sobek, T. J. Lee, Peter Newton,

and Ravi Jain. The interaction of the formal and practical in parallel

[142]

143)

[144)

[145]

[146]

206

programming snvironment development: CODE. Technical Report TR-

91-09, Univ. T=xas at Austin, Dept. of Comp. Sci., 1991.

Jennifer Whizchead. The complexity of file transfer scheduling with
forwarding. SZ4M J. Comput., 19(2):222-245, Apr. 1990.

A. W. Wilsor. Jr. Hierarchical cache/bus architecture for shared mem-
ory multiproc=ssors. In 14th Intl. Symp. Comp. Arch., pages 244-252,
1987.

R. H. Wolfe. Jr. and C. N. Liu. Interactive visualization of 3D seismic
data: A volu—ettic method. IEEE Comp. Graphics Appl., pages 24-30,
July 1988.

J. Xu and D. L. Parnas. Scheduling processes with release times, dead-
lines, precedsnce, and exclusion relations. IEEE Trans. Soft. Eng.,

16:360-369. Mar. 1990.

W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive sched-

uling under tme and resource constraints. IEEE Trans. Comp., page

949, Aug. 1957

VITA

Ravi Jain was born on July 3, 1960, at Simla, India. After completing high
school in Kitwe, Zambia, he received the B.Sc. in Electronics Engineering
from The City University, London, in 1980. He obtained an M.S.E.E. from
Penn State University in 1982, where his research focused on modeling en-
ergy deposition in the auroral ionosphere. From 1982 to 1985 he worked at
Syntrex Inc. on communications and systems software for a microcomputer
system, a local area network, and a fault-tolerant file server. He later worked
at SES Inc. on performance modeling of communications systems, and at the
Schlumberger Laboratory for Computer Science on high-level parallel pro-

gramming.

Jain has been an MCD Fellow at the University of Texas at Austin. His
research interests include resource management in parallel and distributed
computers, communications protocols, discrete algorithms, and performance
analysis. Jain has several refereed publications, and has served as a referee
for mumerous conferences and journals. Jain is a member of the Upsilon Pi
Epsilon and Phi Kappa Phi honorary societies, as well as ACM, IEEE, and
CPSR. Jain’s current address is Bellcore, 445 South Street, Morristown, NJ
07962.

Permanent address: 114 East 31st St., #311
Austin, TX 78705

	jain-dissertation-tr93-03a.pdf
	jain-dissertation-tr93-03b
	jain-dissertation-tr93-03c
	jain-dissertation-tr93-03d

